Volume 37 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Quang Ngo Khoa, Hieu Nguyen Ngoc, Bao Vo Van Quoc, Phuoc Vo Thi, Ngoc Le Xuan Diem, Doc Luong Quang, Tri Nguyen Minh, Son Le Vu Truong, Son Le Van Thanh, Ha Che Thi Cam. Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging. New Carbon Mater., 2022, 37(3): 595-602. doi: 10.1016/S1872-5805(22)60608-5
Citation: Quang Ngo Khoa, Hieu Nguyen Ngoc, Bao Vo Van Quoc, Phuoc Vo Thi, Ngoc Le Xuan Diem, Doc Luong Quang, Tri Nguyen Minh, Son Le Vu Truong, Son Le Van Thanh, Ha Che Thi Cam. Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging. New Carbon Mater., 2022, 37(3): 595-602. doi: 10.1016/S1872-5805(22)60608-5

Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging

doi: 10.1016/S1872-5805(22)60608-5
More Information
  • Corresponding author:

    Quang Ngo Khoa. E-mail: nkquang@hueuni.edu.vn

  • Received Date: 2021-06-15
  • Rev Recd Date: 2021-08-23
  • Available Online: 2022-04-06
  • Publish Date: 2022-06-01
  • A low-cost and simple method is reported for the synthesis of carbon nanodots (CDs) from waste wine cork using hydrothermal treatment. The structural and optical properties of the CDs were characterized by TEM, FTIR, Raman, UV-Vis absorption, and photoluminescence (PL) spectroscopy. Results indicate that the CDs have an average diameter of ~ 6.2 ± 2.7 nm and their excitation-dependent PL is related to the functional groups on their surface. The CDs have a quantum yield of 1.54%, estimated using quinine sulfate as a reference. They have been successfully applied in the bioimaging of mesenchymal stem cells (MSCs). After treatment with the CDs, the MSCs fluoresce green, yellow and red colors under the excitation wavelengths in the ranges 320-380 nm, 450-490 nm, and 515-560 nm, respectively, demonstrating their potential use in the field of fluorescence imaging.
  • loading
  • [1]
    Li H, Kang Z, Liu Y, et al. Carbon nanodots: Synthesis, properties and applications[J]. J Mater Chem,2012,22:24230-24253. doi: 10.1039/c2jm34690g
    [2]
    Wang Y, Hu A. Carbon quantum dots: Synthesis, properties and applications[J]. J Mater Chem C,2014,2:6921-6939. doi: 10.1039/C4TC00988F
    [3]
    Liu M L, Chen B B, Li C M, et al. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications[J]. Green Chem,2019,21:449-471. doi: 10.1039/C8GC02736F
    [4]
    Meng W, Bai X, Wang B, et al. Biomass-derived carbon dots and their applications[J]. Energy Environ Mater,2019,2:172-192. doi: 10.1002/eem2.12038
    [5]
    Sun Y-P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colourful Photoluminescence[J]. J Am Chem Soc,2006,128:7756-7757. doi: 10.1021/ja062677d
    [6]
    Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. J Mater Chem,2009,19:484-488. doi: 10.1039/B812943F
    [7]
    Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. J Am Chem Soc,2007,129:744-745. doi: 10.1021/ja0669070
    [8]
    Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot[J]. Angew Chem Int Ed,2007,46:6473-6475. doi: 10.1002/anie.200701271
    [9]
    Zhu H, Wang X, Li Y, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J]. Chem Commun,2009,34:5118-5120.
    [10]
    Qu S, Wang X, Lu Q, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J]. Angew Chem Int Ed,2012,51:12215-12218. doi: 10.1002/anie.201206791
    [11]
    Liu R, Wu D, Liu S, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers[J]. Angew Chem Int Ed,2009,121:4668-4671. doi: 10.1002/ange.200900652
    [12]
    Sun X, Brückner C, Lei Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission[J]. Nanoscale,2015,7:17278-17282. doi: 10.1039/C5NR05549K
    [13]
    Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc,2004,126(40):12736-12737. doi: 10.1021/ja040082h
    [14]
    Nevar A, Tarasenka N, Nedelko M, et al. Carbon nanodots with tunable luminescence properties synthesized by electrical discharge in octane[J]. Carbon Lett,2021,31:39-46. doi: 10.1007/s42823-020-00147-9
    [15]
    Yang N, Jiang X, Pang D W. Carbon Nanoparticles and Nanostructures. Switzerland: Springer, 2016: 243-249.
    [16]
    Zhou J, Sheng Z, Han H, et al. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source[J]. Mater Lett,2012,66(1):222-224. doi: 10.1016/j.matlet.2011.08.081
    [17]
    Lim S Y, Shen W, Gao Z. Carbon quantum dots and their applications[J]. Chem Soc Rev,2015,44(1):362-381. doi: 10.1039/C4CS00269E
    [18]
    Sahu S, Behera B, Maiti T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents[J]. Chem Commun,2012,48(70):8835-8837. doi: 10.1039/c2cc33796g
    [19]
    Shen P, Gao J, Cong J, et al. Synthesis of cellulose-based carbon dots for bioimaging[J]. ChemistrySelect,2016,1:1314-1317. doi: 10.1002/slct.201600216
    [20]
    Quang N K, Ha C T C. Low-cost synthesis of carbon nanodots from millets for bioimaging[J]. MRS Adv,2019,4(3-4):249-254. doi: 10.1557/adv.2019.12
    [21]
    Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging[J]. J Am Chem Soc,2007,129(37):11318-11319. doi: 10.1021/ja073527l
    [22]
    He L, Wang T, An J, et al. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging[J]. CrystEngComm,2014,16:3259-3263. doi: 10.1039/c3ce42506a
    [23]
    Liang Y, Zhang H, Zhang Y, et al. Simple hydrothermal preparation of carbon nanodots and their application in colorimetric and fluorimetric detection of mercury ions[J]. Anal Methods,2015,7:7540-7547. doi: 10.1039/C5AY01301A
    [24]
    Li H, Zhang Y, Wang L, et al. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform[J]. Chem Commun,2011,47:961-963. doi: 10.1039/C0CC04326E
    [25]
    Li H, Chen L, Wu H, et al. Ionic liquid-functionalized fluorescent carbon nanodots and their applications in electrocatalysis, biosensing, and cell imaging[J]. Langmuir,2014,30(49):15016-15021. doi: 10.1021/la503729v
    [26]
    Baker S N, Baker G A. Luminescent carbon nanodots: emergent nanolights[J]. Angew Chem Int Ed,2010,38:6726-6744.
    [27]
    Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chem Commun,2012,48:380-382. doi: 10.1039/C1CC15678K
    [28]
    Dong Y, Pang H, Yang H B, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew Chem Int Ed,2013,52(30):7800-7804. doi: 10.1002/anie.201301114
    [29]
    Jin X, Sun X, Chen G, et al. pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells[J]. Carbon,2015,81:388-395. doi: 10.1016/j.carbon.2014.09.071
    [30]
    Li J Y, Liu Y, Shu Q W, et al. One-pot hydrothermal synthesis of carbon dots with efficient up- and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay[J]. Langmuir,2017,33(4):1043-1050. doi: 10.1021/acs.langmuir.6b04225
    [31]
    Liu Y, Zhou Q, Yuan Y, et al. Hydrothermal synthesis of fluorescent carbon dots from sodium citrate and polyacrylamide and their highly selective detection of lead and pyrophosphate[J]. Carbon,2017,115:550-560. doi: 10.1016/j.carbon.2017.01.035
    [32]
    Sharma V, Saini A K, Mobin S M. Multicolour fluorescent carbon nanoparticle probes for live cell imaging and dual palladium and mercury sensors[J]. J Mater Chem B,2016,4:2466-2476. doi: 10.1039/C6TB00238B
    [33]
    Titirici M M. Sustainable Carbon Materials from Hydrothermal Processes[M]. United Kingdom: John Wiley & Sons, 2013: 151-212.
    [34]
    Lu W, Qin X, Liu S, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury (II) ions[J]. Anal Chem,2012,84(12):5351-5357. doi: 10.1021/ac3007939
    [35]
    Du F, Zhang M, Li X, et al. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications[J]. Nanotechnology,2014,25(31):315702-315711. doi: 10.1088/0957-4484/25/31/315702
    [36]
    Liu S, Tian J, Wang L, et al. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions[J]. Adv Mater,2012,24(15):2037-2041. doi: 10.1002/adma.201200164
    [37]
    Liu Y, Zhaoa Y, Zhang Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection[J]. Sens Actuators B,2014,196:647-652. doi: 10.1016/j.snb.2014.02.053
    [38]
    Qin X Y, Lu W B, Asiri A M, et al. Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles–reduced[J]. Catal Sci Technol,2013,3:1027-1035. doi: 10.1039/c2cy20635h
    [39]
    Mota G S, Sartori C J, Ferreira J, et al. Cellular structure and chemical composition of cork from Plathymenia reticulata occurring in the Brazilian Cerrado[J]. Ind Crops Prod,2016,90:65-75. doi: 10.1016/j.indcrop.2016.06.014
    [40]
    Hill S, Galan M C. Fluorescent carbon dots from mono- and polysaccharides: Synthesis, properties and applications[J]. Beilstein J Org Chem,2017,13:675-693. doi: 10.3762/bjoc.13.67
    [41]
    Nima A M, Amritha P, Lalan V, et al. Green synthesis of blue-fluorescent carbon nanospheres from the pith of tapioca (Manihot esculenta) stem for Fe (III) detection[J]. J Mater Sci: Mater Electron,2020,31(6):21767-21778.
    [42]
    Han X, Zhong S, Pan W, et al. A simple strategy for synthesizing highly luminescent carbon nanodots and application as effective down-shifting layers[J]. Nanotechnology,2015,26(6):065402-065411. doi: 10.1088/0957-4484/26/6/065402
    [43]
    Zhu S, Song Y, Zhao X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective[J]. Nano Res.,2015,8(2):355-381. doi: 10.1007/s12274-014-0644-3
    [44]
    Kwon W, Do S, Kim J H, et al. Control of photoluminescence of carbon nanodots via surface functionalization using parasubstituted anilines[J]. Sci Rep,2015,5:12604-12613. doi: 10.1038/srep12604
    [45]
    Ding H, Li X H, Chen X B, et al. Surface states of carbon dots influences on luminescence[J]. J Appl Phys,2020,127:231101-231121. doi: 10.1063/1.5143819
    [46]
    Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angew Chem Int Ed,2013,52(14):3953-3957. doi: 10.1002/anie.201300519
    [47]
    Zhu C, Zhai J, Dong S. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction[J]. Chem Commun,2012,48:9367-9369. doi: 10.1039/c2cc33844k
    [48]
    Vedamalai M, Periasamy A P, Wang C W, et al. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells[J]. Nanoscale,2014,6:13119-13125. doi: 10.1039/C4NR03213F
    [49]
    Hsu P C, Chen P C, Ou C M, et al. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells[J]. J Mater Chem B,2013,1:1774-1781. doi: 10.1039/c3tb00545c
    [50]
    Jiang C, Wu H, Song X, et al. Presence of photoluminescent carbon dots in Nescafes original instant coffee: Applications to bioimaging [J]. Talanta. 2014, 127: 68-74.
    [51]
    Li W, Yue Z, Wang C, et al. An absolutely green approach to fabricate carbon nanodots from soya bean grounds[J]. RSC Adv,2013,3:20662-20665. doi: 10.1039/c3ra43330g
  • 20210145-Supporting information.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(1359) PDF Downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return