Volume 37 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
GENG Chao, CHEN Ya-xin, SHI Li-luo, SUN Zong-fu, ZHANG Lei, XIAO An-yong, JIANG Jiang-min, ZHUANG Quan-chao, JU Zhi-cheng. Design of active sites in carbon materials for electrochemical potassium storage. New Carbon Mater., 2022, 37(3): 461-483. doi: 10.1016/S1872-5805(22)60612-7
Citation: GENG Chao, CHEN Ya-xin, SHI Li-luo, SUN Zong-fu, ZHANG Lei, XIAO An-yong, JIANG Jiang-min, ZHUANG Quan-chao, JU Zhi-cheng. Design of active sites in carbon materials for electrochemical potassium storage. New Carbon Mater., 2022, 37(3): 461-483. doi: 10.1016/S1872-5805(22)60612-7

Design of active sites in carbon materials for electrochemical potassium storage

doi: 10.1016/S1872-5805(22)60612-7
Funds:  This research was supported by the National Natural Science Foundation of China (21975283), China Postdoctoral Science Foundation (2020M681762), State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource (KFKT2021007), and CAS Key Laboratory of Carbon Materials (KLCMKFJJ2010)
More Information
  • Author Bio:

    耿 超,硕士生. E-mail:17865813101@163.com

  • Corresponding author: CHEN Ya-xin, Ph.D, Lecturer. E-mail: chenyxcumt@163.com; JU Zhi-cheng, Ph.D, Associated Professor. E-mail: juzc@cumt.edu.cn
  • Received Date: 2022-03-21
  • Rev Recd Date: 2022-04-21
  • Available Online: 2022-04-27
  • Publish Date: 2022-06-01
  • Carbon materials have attracted considerable attention as anodes for potassium ion batteries owing to their low-cost, nontoxicity, and controllable structures. The potassium storage behavior of carbon materials is highly associated with their active sites. In recent years, significant advances have been made in designing the active sites of carbon materials to meet the requirements of different potassium-based storage devices. Here, potassium storage mechanisms (intercalation and adsorption) for guiding the rational design of carbon materials are discussed. Based on these mechanisms, the review provides fundamental insight into the relationship between the structures and potassium storage performance of different carbon materials, including graphite, soft carbon, hard carbon, porous carbon, heteroatom-doped carbon, hybridized carbon and composited carbon. The structural design principles of carbon anode materials for potassium-ion full cell and potassium-ion capacitors are summarized based on the initial coulombic efficiency, capacity, potential plateau, rate performance, and cyclic stability. Finally, the problems and future research directions for the design of active sites in carbon materials for electrochemical potassium storage are considered.
  • loading
  • [1]
    Wu Y M, Zhao H T, Wu Z G, et al. Rational design of carbon materials as anodes for potassium-ion batteries[J]. Energy Storage Materials,2021,34:483-507. doi: 10.1016/j.ensm.2020.10.015
    [2]
    Guo R, Liu X, Wen B, et al. Engineering mesoporous structure in amorphous carbon boosts potassium storage with high initial coulombic efficiency[J]. Nano-Micro Letters,2020,12(1):148. doi: 10.1007/s40820-020-00481-7
    [3]
    Zhu C Y, Ye Y W, Guo X, et al. Design and synthesis of carbon-based nanomaterials for electrochemical energy storage[J]. New Carbon Materials,2022,37(1):59-92. doi: 10.1016/S1872-5805(22)60579-1
    [4]
    Shaker M, Ghazvini A A S, Cao W Q, et al. Biomass-derived porous carbons as supercapacitor electrodes - A review[J]. New Carbon Materials,2021,36(3):546-572. doi: 10.1016/S1872-5805(21)60038-0
    [5]
    Sepulveda N A, Jenkins J D, Edington A, et al. The design space for long-duration energy storage in decarbonized power systems[J]. Nature Energy,2021,6(5):506-516. doi: 10.1038/s41560-021-00796-8
    [6]
    Chen Y X, Shi L L, Yuan Q, et al. Crystallization-induced morphological tuning toward denim-like graphene nanosheets in a KCl-copolymer solution[J]. ACS Nano,2018,12(4):4019-4024. doi: 10.1021/acsnano.8b01708
    [7]
    Wu X, Chen Y X, Xing Z, et al. Advanced carbon‐based anodes for potassium‐ion batteries[J]. Advanced Energy Materials,2019,9(21):1900343. doi: 10.1002/aenm.201900343
    [8]
    Wang D K, Zhang J P, Dong Y, et al. Progress on graphitic carbon materials for potassium-based energy storage[J]. New Carbon Materials,2021,36(3):435-448. doi: 10.1016/S1872-5805(21)60039-2
    [9]
    Ju Z C, Li P Z, Ma G Y, et al. Few layer nitrogen-doped graphene with highly reversible potassium storage[J]. Energy Storage Materials,2018,11:38-46. doi: 10.1016/j.ensm.2017.09.009
    [10]
    Chen Y X, Xi B J, Huang M, et al. Defect-selectivity and "order in disorder" engineering in carbon for durable and fast potassium storage[J]. Advanced Materials,2021,34(7):2108621.
    [11]
    Rajagopalan R, Tang Y, Ji X, et al. Advancements and challenges in potassium ion batteries: A comprehensive review[J]. Advanced Functional Materials,2020,30(12):1909486. doi: 10.1002/adfm.201909486
    [12]
    Lei K X, Li F J, Mu C N, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes[J]. Energy & Environmental Science,2017,10(2):552-557.
    [13]
    Kubota K, Dahbi M, Hosaka T, et al. Towards K-ion and Na-ion batteries as "beyond Li-ion"[J]. Chemical record (New York, N.Y.) ,2018,18(4):459-479. doi: 10.1002/tcr.201700057
    [14]
    Zhang L P, Wang W, Lu S F, et al. Carbon anode materials: A detailed comparison between Na‐ion and K‐ion batteries[J]. Advanced Energy Materials,2021,11(11):2003640. doi: 10.1002/aenm.202003640
    [15]
    Gao F, Zang Y H, Wang Y, et al. A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste[J]. New Carbon Materials,2021,36(1):34-48. doi: 10.1016/S1872-5805(21)60003-3
    [16]
    Tan H, Du X Q, Zhou R, et al. Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries[J]. Carbon,2021,176:383-389. doi: 10.1016/j.carbon.2021.02.003
    [17]
    Liu S, Kang L, Zhang J, et al. Carbonaceous anode materials for non-aqueous sodium- and potassium-ion hybrid capacitors[J]. ACS Energy Letters,2021,6(11):4127-4154. doi: 10.1021/acsenergylett.1c01855
    [18]
    Zhang J, Lai L, Wang H, et al. Energy storage mechanisms of anode materials for potassium ion batteries[J]. Materials Today Energy,2021,21:100747. doi: 10.1016/j.mtener.2021.100747
    [19]
    Wu S, Song Y, Lu C, et al. An adsorption-insertion mechanism of potassium in soft carbon[J]. Small,2021,18(4):2105275.
    [20]
    Chen J F, Feng J M, Dong L, et al. Nanoporous coal via Ni-catalytic graphitization as anode materials for potassium ion battery[J]. Journal of Electroanalytical Chemistry,2020,862:113902. doi: 10.1016/j.jelechem.2020.113902
    [21]
    Du J C, Gao S S, Shi P H, et al. Three-dimensional carbonaceous for potassium ion batteries anode to boost rate and cycle life performance[J]. Journal of Power Sources,2020,451:227727. doi: 10.1016/j.jpowsour.2020.227727
    [22]
    Zhang W C, Liu Y J, Guo Z P, et al. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering[J]. Science Advances,2019,5(5):eaav7412. doi: 10.1126/sciadv.aav7412
    [23]
    Yin B, Liang S, Yu D, et al. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries[J]. Advanced Materials,2021,33(37):2100808. doi: 10.1002/adma.202100808
    [24]
    Liu Z, Zhang L H, Sheng L Z, et al. Edge-nitrogen-rich carbon dots pillared graphene blocks with ultrahigh volumetric/gravimetric capacities and ultralong life for sodium-ion storage[J]. Advanced Energy Materials,2018,8(30):1802042. doi: 10.1002/aenm.201802042
    [25]
    Liu L Y, Lin Z F, Chane-Ching J Y, et al. 3D rGO aerogel with superior electrochemical performance for K–ion battery[J]. Energy Storage Materials,2019,19:306-313. doi: 10.1016/j.ensm.2019.03.013
    [26]
    An Y L, Fei H F, Zeng G F, et al. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte[J]. Journal of Power Sources,2018,378:66-72. doi: 10.1016/j.jpowsour.2017.12.033
    [27]
    Sultana I, Rahman M M, Ramireddy T, et al. High capacity potassium-ion battery anodes based on black phosphorus[J]. Journal of Materials Chemistry A,2017,5(45):23506-23512. doi: 10.1039/C7TA02483E
    [28]
    Zhang S, Teck A A, Guo Z Y, et al. Carbon composite anodes with tunable microstructures for potassium‐ion batteries[J]. Batteries & Supercaps,2021,4(4):663-670.
    [29]
    Tian S, Zhang Y, Yang C H, et al. Nitrogen-doped carbon nanosheet coated multilayer graphite as stabilized anode material of potassium-ion batteries with high performances[J]. Electrochimica Acta,2021,380:138254. doi: 10.1016/j.electacta.2021.138254
    [30]
    Xu S, Cai L, Niu P, et al. The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes[J]. Carbon,2021,178:256-264. doi: 10.1016/j.carbon.2021.03.039
    [31]
    Yu F, Huang T, Zhang P P, et al. Design and synthesis of electrode materials with both battery-type and capacitive charge storage[J]. Energy Storage Materials,2019,22:235-255. doi: 10.1016/j.ensm.2019.07.023
    [32]
    Zhang Y, Tao L, Xie C, et al. Defect engineering on electrode materials for rechargeable batteries[J]. Advanced Materials,2020,32(7):1905923. doi: 10.1002/adma.201905923
    [33]
    Wu J, Zhang X X, Li Z, et al. Toward high‐performance capacitive potassium‐ion storage: A superior anode material from silicon carbide‐derived carbon with a well‐developed pore structure[J]. Advanced Functional Materials,2020,30(40):2004348. doi: 10.1002/adfm.202004348
    [34]
    Chen Y X, Shi L L, Li A, et al. Capacity enhancement of porous carbon electrodes during long-term cycling in lithium-ion batteries[J]. Journal of The Electrochemical Society,2017,164(9):2000-A2006. doi: 10.1149/2.1151709jes
    [35]
    Chen Y X, Shi L L, Guo S S, et al. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries[J]. Journal of Materials Chemistry A,2017,5(37):19866-19874. doi: 10.1039/C7TA06453E
    [36]
    Bi H H, He X J, Yang L, et al. Interconnected carbon nanocapsules with high N/S co-doping as stable and high-capacity potassium-ion battery anode[J]. Journal of Energy Chemistry,2022,66:195-204. doi: 10.1016/j.jechem.2021.08.016
    [37]
    Chen Y, Shi L, Li D, et al. Undercooling-directed nacl crystallization: An approach towards nanocavity-linked graphene networks for fast lithium and sodium storage[J]. Nanoscale,2020,12(14):7622-7630. doi: 10.1039/D0NR01126F
    [38]
    Guo Y Y, Feng Y F, Li H, et al. Carbon quantum dots in hard carbon: an approach to achieving PIB anodes with high potassium adsorption[J]. Carbon,2022,189(15):142-151.
    [39]
    Yang J, Ju Z, Jiang Y, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage[J]. Advanced Materials,2018,30(4):1700104. doi: 10.1002/adma.201700104
    [40]
    Peng D Q, Chen Y X, Ma H L, et al. Enhancing the cycling stability by tuning the chemical bonding between phosphorus and carbon nanotubes for potassium-ion battery anodes[J]. ACS Applied Materials & Interfaces,2020,12(33):37275-37284.
    [41]
    Zhang W C, Lu J Guo Z P. Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage[J]. Materials Today,2021,50:400-417. doi: 10.1016/j.mattod.2021.03.015
    [42]
    Wang B, Peng Y, Yuan F, et al. A comprehensive review of carbons anode for potassium-ion battery: Fast kinetic, structure stability and electrochemical[J]. Journal of Power Sources,2021,484:229244. doi: 10.1016/j.jpowsour.2020.229244
    [43]
    Jiang Y, Yang Y, Xu R, et al. Ultrafast potassium storage in F-induced ultra-high edge-defective carbon nanosheets[J]. ACS Nano,2021,15(6):10217-10227. doi: 10.1021/acsnano.1c02275
    [44]
    Liu H, Du H L, Zhao W, et al. Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage[J]. Energy Storage Materials,2021,40:490-498. doi: 10.1016/j.ensm.2021.05.037
    [45]
    Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society,2015,137(36):11566-9. doi: 10.1021/jacs.5b06809
    [46]
    Wang B, Gu L, Yuan F, et al. Edge-enrich N-doped graphitic carbon: Boosting rate capability and cyclability for potassium ion battery[J]. Chemical Engineering Journal,2022,432(15):134321.
    [47]
    Xing Z, Qi Y, Jian Z, et al. Polynanocrystalline graphite: A new carbon anode with superior cycling performance for K-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(5):4343-4351.
    [48]
    Hosaka T, Kubota K, Kojima H, et al. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries[J]. Chemical Communications,2018,54(60):8387-8390. doi: 10.1039/C8CC04433C
    [49]
    Xu Y, Zhang C, Zhou M, et al. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries[J]. Nature Communications,2018,9(1):1720. doi: 10.1038/s41467-018-04190-z
    [50]
    Liu C, Xiao N, Li H J, et al. Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode[J]. Chemical Engineering Journal,2020,382(15):121759.
    [51]
    Liu Q, Han F, Zhou J, et al. Boosting the potassium-ion storage performance in soft carbon anodes by the synergistic effect of optimized molten salt medium and N/S dual-doping[J]. ACS Applied Materials & Interfaces,2020,12(18):20838-20848.
    [52]
    Liu Y, Lu Y X, Xu Y S, et al. Pitch-derived soft carbon as stable anode material for potassium ion batteries[J]. Advanced Materials,2020,32(17):2000505. doi: 10.1002/adma.202000505
    [53]
    Tan H, Zhou R Zhang B. Understanding potassium ion storage mechanism in pitch-derived soft carbon and the consequence on cyclic stability[J]. Journal of Power Sources,2021,506:230179. doi: 10.1016/j.jpowsour.2021.230179
    [54]
    Wang P F, Gong Z, Ye K, et al. N-rich biomass carbon derived from hemp as a full carbon-based potassium ion hybrid capacitor anode[J]. Applied Surface Science,2021,553:149569. doi: 10.1016/j.apsusc.2021.149569
    [55]
    Liu Y, Dai H D, Wu L, et al. A large scalable and low‐cost sulfur/nitrogen dual‐doped hard carbon as the negative electrode material for high‐performance potassium‐ion batteries[J]. Advanced Energy Materials,2019,9(34):1901379. doi: 10.1002/aenm.201901379
    [56]
    Tao S, Xu W, Zheng J H, et al. Soybean roots-derived N, P co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries[J]. Carbon,2021,178:233-242. doi: 10.1016/j.carbon.2021.03.022
    [57]
    Li W Z, Zhang R, Chen Z, et al. Microstructure-dependent K+ storage in porous hard carbon[J]. Small,2021,17(21):2100397. doi: 10.1002/smll.202100397
    [58]
    Yuan F, Zhang D, Li Z, et al. Unraveling the intercorrelation between micro/mesopores and K migration behavior in hard carbon [J]. Small, 2022, 18 (12): 2107113. DOI: 10.1002/smll. 202107113.
    [59]
    Ma X Q, Xiao N, Xiao J, et al. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries[J]. Carbon,2021,179:33-41. doi: 10.1016/j.carbon.2021.03.067
    [60]
    Wu X, Lam C W K, Wu N Q, et al. Multiple templates fabrication of hierarchical porous carbon for enhanced rate capability in potassium-ion batteries[J]. Materials Today Energy,2019,11:182-191. doi: 10.1016/j.mtener.2018.11.009
    [61]
    Xu Y, Ruan J, Pang Y, et al. Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors[J]. Nano-Micro Letters,2020,13(1):14.
    [62]
    Wu X, Zhao W, Wang H, et al. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries[J]. Journal of Power Sources,2018,378:460-467. doi: 10.1016/j.jpowsour.2017.12.077
    [63]
    Wang M Y, Zhu Y Y, Zhang Y, et al. Cost-effective hard–soft carbon composite anodes with promising potassium ions storage performance[J]. Electrochimica Acta,2021,368:137649. doi: 10.1016/j.electacta.2020.137649
    [64]
    Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries[J]. Advanced Energy Materials,2021,8(25):1801149.
    [65]
    Tai Z X, Zhang Q, Liu Y J, et al. Activated carbon from the graphite with increased rate capability for the potassium ion battery[J]. Carbon,2017,123:54-61. doi: 10.1016/j.carbon.2017.07.041
    [66]
    Liu Z, Wang J, Jia X, et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano,2019,13(9):10631-10642. doi: 10.1021/acsnano.9b04893
    [67]
    Lin X Y, Huang J Q, Zhang B. Correlation between the microstructure of carbon materials and their potassium ion storage performance[J]. Carbon,2019,143:138-146. doi: 10.1016/j.carbon.2018.11.001
    [68]
    Zeng S, Zhou X F, Wang B, et al. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries[J]. Journal of Materials Chemistry A,2019,7(26):15774-15781. doi: 10.1039/C9TA03245B
    [69]
    Fan L, Ma R, Zhang Q, et al. Graphite anode for a potassium-ion battery with unprecedented performance[J]. Angewandte Chemie International Edition,2019,58(31):10500-10505. doi: 10.1002/anie.201904258
    [70]
    Wang H H, Yang G, Chen Z, et al. Nitrogen configuration dependent holey active sites toward enhanced K+ storage in graphite foam[J]. Journal of Power Sources,2019,419:82-90. doi: 10.1016/j.jpowsour.2019.02.029
    [71]
    Shen Y P, Huang C, Li Y H, et al. Enhanced sodium and potassium ions storage of soft carbon by a S/O co-doped strategy[J]. Electrochimica Acta,2021,367:137526. doi: 10.1016/j.electacta.2020.137526
    [72]
    Ou M Y, Zhang Y, Zhu Y, et al. Local structures of soft carbon and electrochemical performance of potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2021,13(24):28261-28269.
    [73]
    Kubota K, Shimadzu S, Yabuuchi N, et al. Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion[J]. Chemistry of Materials,2020,32(7):2961-2977. doi: 10.1021/acs.chemmater.9b05235
    [74]
    Chen C, Wu M Q, Wang Y S, et al. Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage[J]. Journal of Power Sources,2019,444:227310. doi: 10.1016/j.jpowsour.2019.227310
    [75]
    Alvin S, Cahyadi H S, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials,2020,10(20):2000283. doi: 10.1002/aenm.202000283
    [76]
    Wang B, Zhang Z Y, Yuan F, et al. An insight into the initial coulombic efficiency of carbon-based anode materials for potassium-ion batteries[J]. Chemical Engineering Journal,2022,428:131093. doi: 10.1016/j.cej.2021.131093
    [77]
    Zhang H H, Luo C, He H N, et al. Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries[J]. Nanoscale Horizons,2020,5(5):895-903. doi: 10.1039/D0NH00018C
    [78]
    Xu Y S, Duan S Y, Sun Y G, et al. Recent developments in electrode materials for potassium-ion batteries[J]. Journal of Materials Chemistry A,2019,7(9):4334-4352. doi: 10.1039/C8TA10953B
    [79]
    Chen J C, Xiao G C, Duan G G, et al. Structural design of carbon dots/porous materials composites and their applications[J]. Chemical Engineering Journal,2021,421(1):127743.
    [80]
    Zhu J W, Mu S C. Defect engineering in carbon‐based electrocatalysts: Insight into intrinsic carbon defects[J]. Advanced Functional Materials,2020,30(25):2001097. doi: 10.1002/adfm.202001097
    [81]
    Li J P, Li Y J, Ma X D, et al. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries[J]. Chemical Engineering Journal,2020,384(15):123328.
    [82]
    Liu S T, Yang B B, Zhou J S, et al. Nitrogen-rich carbon-onion-constructed nanosheets: an ultrafast and ultrastable dual anode material for sodium and potassium storage[J]. Journal of Materials Chemistry A,2019,7(31):18499-18509. doi: 10.1039/C9TA04699B
    [83]
    Benzigar M R, Talapaneni S N, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews,2018,47(8):2680-2721. doi: 10.1039/C7CS00787F
    [84]
    Lee J, Oh J, Jeon Y, et al. Multi-heteroatom-doped hollow carbon attached on graphene using LiFePO4 nanoparticles as hard templates for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2018,10(31):26485-26493.
    [85]
    Wang W K, Zhao W W, Chen T T, et al. All‐in‐one hollow flower‐like covalent organic frameworks for flexible transparent devices[J]. Advanced Functional Materials,2021,31(29):2010306. doi: 10.1002/adfm.202010306
    [86]
    Qiu D P, Guan J Y, Li M, et al. Kinetics enhanced nitrogen‐doped hierarchical porous hollow carbon spheres boosting advanced potassium‐ion hybrid capacitors[J]. Advanced Functional Materials,2019,29(32):1903496. doi: 10.1002/adfm.201903496
    [87]
    Tao X S, Sun Y G, Liu Y, et al. Facile synthesis of hollow carbon nanospheres and their potential as stable anode materials in potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2020,12(11):13182-13188.
    [88]
    Lin Q, Zhang J, Lv W, et al. A functionalized carbon surface for high-performance sodium-ion storage[J]. Small,2020,16(15):1902603. doi: 10.1002/smll.201902603
    [89]
    Share K, Cohn A P, Carter R, et al. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes[J]. ACS Nano,2016,10(10):9738-9744. doi: 10.1021/acsnano.6b05998
    [90]
    Shen W, Wang C, Xu Q J, et al. Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials[J]. Advanced Energy Materials,2015,5(1):1400982. doi: 10.1002/aenm.201400982
    [91]
    Zhang W L, Sun M L, Yin J, et al. Accordion-like carbon with high nitrogen doping for fastand stable K ion storage[J]. Advanced Energy Materials,2021,11(41):2101928. doi: 10.1002/aenm.202101928
    [92]
    Tian K, Wang J, Cao L, et al. Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance[J]. Nature Communications,2020,11(1):3884. doi: 10.1038/s41467-020-17727-y
    [93]
    Li J L, Qin W, Xie J P, et al. Sulphur-doped reduced graphene oxide sponges as high-performance free-standing anodes for K-ion storage[J]. Nano Energy,2018,53:415-424. doi: 10.1016/j.nanoen.2018.08.075
    [94]
    Chen W M, Wan M, Liu Q, et al. Heteroatom‐doped carbon materials: synthesis, mechanism, and application for sodium‐ion batteries[J]. Small Methods,2018,3(4):1800323.
    [95]
    Cui R C, Xu B, Dong H J, et al. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries[J]. Advanced Science,2020,7(5):1902547. doi: 10.1002/advs.201902547
    [96]
    Tao L, Yang Y P, Wang H L, et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms[J]. Energy Storage Materials,2020,27:212-225. doi: 10.1016/j.ensm.2020.02.004
    [97]
    Wang T D, Li Q, Feng Q T, et al. Carbon defects applied to potassium-ion batteries: A density functional theory investigation[J]. Nanoscale,2021,13(32):13719-13734. doi: 10.1039/D1NR03604A
    [98]
    Dong Y, Lin X J, Wang D K, et al. Modulating the defects of graphene blocks by ball-milling for ultrahigh gravimetric and volumetric performance and fast sodium storage[J]. Energy Storage Materials,2020,30:287-295. doi: 10.1016/j.ensm.2020.05.016
    [99]
    Dong Y, Zhang S, Du X, et al. Boosting the electrical double‐layer capacitance of graphene by self‐doped defects through ball‐milling[J]. Advanced Functional Materials,2019,29(24):1901127. doi: 10.1002/adfm.201901127
    [100]
    Yuan R, Dong Y, Zhang S, et al. Efficient utilization of the active sites in defective graphene blocks through functionalization synergy for compact capacitive energy storage[J]. ACS Applied Materials & Interfaces,2021,13(48):57092-57099.
    [101]
    Yang Z, Ren X, Song Y, et al. Germanium‐carbdiyne: A 3D well‐defined sp‐hybridized carbon‐based material with superhigh Li storage property[J]. Energy & Environmental Materials,2022(0):1-8.
    [102]
    Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications,2010,46(19):3256-3258. doi: 10.1039/b922733d
    [103]
    Yi Y Y, Li J Q, Zhao W, et al. Temperature‐mediated engineering of graphdiyne framework enabling high‐performance potassium storage[J]. Advanced Functional Materials,2020,30(31):2003039. doi: 10.1002/adfm.202003039
    [104]
    Meng Y T, Nie C H, Guo W J, et al. Inorganic cathode materials for potassium ion batteries[J]. Materials Today Energy,2022, 25:100982.
    [105]
    Liu S, Kang L, Jun S C. Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries[J]. Advanced Materials,2021,33(47):2004689. doi: 10.1002/adma.202004689
    [106]
    Qin L, Xiao N, Zheng J F, et al. Localized high‐concentration electrolytes boost potassium storage in high‐loading graphite[J]. Advanced Energy Materials,2019,9(44):1902618. doi: 10.1002/aenm.201902618
    [107]
    Ji B, Zhang F, Song X, et al. A novel potassium-ion-based dual-ion battery[J]. Advanced Materials,2017,29(19):1700519. doi: 10.1002/adma.201700519
    [108]
    Fan L, Liu Q, Chen S, et al. Potassium-based dual ion battery with dual-graphite electrode[J]. Small,2017,13(30):1701011. doi: 10.1002/smll.201701011
    [109]
    Beltrop K, Beuker S, Heckmann A, et al. Alternative electrochemical energy storage: Potassium-based dual-graphite batteries[J]. Energy & Environmental Science,2017,10(10):2090-2094.
    [110]
    Ding X, Zhang F, Ji B, et al. Potassium dual-ion hybrid batteries with ultrahigh rate performance and excellent cycling stability[J]. ACS Applied Materials & Interfaces,2018,10(49):42294-42300.
    [111]
    Liu X, Elia G A, Qin B S, et al. High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes[J]. ACS Energy Letters,2019,4(11):2675-2682. doi: 10.1021/acsenergylett.9b01675
    [112]
    Fan L, Lin K, Wang J, et al. A nonaqueous potassium-based battery-supercapacitor hybrid device[J]. Advanced Materials,2018,30(20):1800804. doi: 10.1002/adma.201800804
    [113]
    Zhang C, Liu X, Li Z, et al. Nitrogen‐doped accordion‐like soft carbon anodes with exposed hierarchical pores for advanced potassium‐ion hybrid capacitors[J]. Advanced Functional Materials,2021,31(23):2101470. doi: 10.1002/adfm.202101470
    [114]
    Wang D K, Zhang J P, Li X T, et al. Woven microsphere architected by carbon nanotubes as high-performance potassium ion batteries anodes[J]. Chemical Engineering Journal,2022,429:132272. doi: 10.1016/j.cej.2021.132272
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article Views(1168) PDF Downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return