Volume 38 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
WANG Xue, SUN Yang, ZHAO Guan-yu, WANG Xu-zhen, QIU Jie-shan. Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation. New Carbon Mater., 2023, 38(1): 162-172. doi: 10.1016/S1872-5805(22)60621-8
Citation: WANG Xue, SUN Yang, ZHAO Guan-yu, WANG Xu-zhen, QIU Jie-shan. Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation. New Carbon Mater., 2023, 38(1): 162-172. doi: 10.1016/S1872-5805(22)60621-8

Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation

doi: 10.1016/S1872-5805(22)60621-8
Funds:  National Natural Science Foundation of China (22179017).
More Information
  • Corresponding author: WANG Xu-zhen, Ph. D, Professor. E-mail: xzwang@dlut.edu.cn
  • Received Date: 2022-04-18
  • Rev Recd Date: 2022-06-12
  • Available Online: 2022-06-16
  • Publish Date: 2023-01-06
  • Cellulose extracted from corncobs, a bulk agricultural waste product, by a solvent at −12 °C, was composited with carbon nanotubes (CNTs) with excellent light absorption properties to construct CNT/cellulose hydrogel composites. Taking advantage of the superior water retention ability and degradability of cellulose hydrogels, and the high-efficiency solar-thermal conversion performance, excellent mechanical properties and biocompatibility of CNTs, CNT/cellulose hydrogel composites are used in water purification by interfacial solar-powered evaporation. The effects of the addition of CNTs on the solar energy absorption, mechanical properties and interfacial solar-thermal water evaporation efficiency of the composites were investigated. With an optimum CNT content of 0.2 wt.%, the composite had an average evaporation rate of ~1.52 kg m−2 h−1 and a solar-steam conversion efficiency of about 92%. After continuous evaporation in seawater for 8 h, the evaporation rate of the composite remained at about 1.37 kg m−2 h−1 without salt precipitation, indicating its strong resistance to salt. The quality of the purified water was superior to the WHO and EPA standards for drinking water. When the composite was used in concentrated acid/alkaline aqueous systems, dye wastewater and heavy metal ion polluted water, the evaporation rates remained in the range 1.30-1.40 kg m−2 h−1, and the solar-steam conversion efficiencies reached 80-86%. The retention rates for both organic pollutants and salt were as high as 99.9%, confirming the evaporation stability of the composite. This work indicates that an evaporator based on the composite has broad application prospects in the fields of seawater desalination and industrial wastewater purification.
  • loading
  • [1]
    ZHOU Xing-yi, GUO You-hong, ZHAO Fei, et al. Hydrogels as an emerging material platform for solar water purification[J]. Accounts of Chemical Research,2019,52(11):3244-3253. doi: 10.1021/acs.accounts.9b00455
    [2]
    Kevin Bethke, Sinem Palantöken, Virgil Andrei, et al. Functionalized cellulose for water purification, antimicrobial applications, and sensors[J]. Advanced Functional Materials,2018,28(23):1-14.
    [3]
    ZHANG Xiao-lei, CHAI Xue-di, LIU Jian-xin, et al. Interfacial characteristics in membrane filtration for oil-in-water treatment processes[J]. Journal of Membrane Science,2021,623:1-10.
    [4]
    Bartholomew T V, Siefert N S, Mauter M S. Cost optimization of osmotically assisted reverse osmosis[J]. Environmental Science & Technology,2018,52(20):11813-11821.
    [5]
    WANG Xun, GAN Qi-mao, CHEN Rong, et al. Water delivery channel design in solar evaporator for efficient and durable water evaporation with salt rejection[J]. ACS Sustainable Chemistry & Engineering,2020,8(21):7753-7761.
    [6]
    SHI Miao, YU Bing-song, ZHANG Jin-chuan, et al. Evolution of organic pores in marine shales undergoing thermocompression: A simulation experiment using hydrocarbon generation and expulsion[J]. Journal of Natural Gas Science and Engineering,2018,59:406-413. doi: 10.1016/j.jngse.2018.09.008
    [7]
    WANG Tian-yi, HUANG Heng-bo, LI Hao-liang, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Materials,2021,36(4):683-701. doi: 10.1016/S1872-5805(21)60066-5
    [8]
    Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization[J]. Nature Communications,2014,5:4449-4455. doi: 10.1038/ncomms5449
    [9]
    CHEN Chao-ji, KUANG Yu-di, HU Liang-bing. Challenges and opportunities for solar evaporation[J]. Joule,2019,3(3):683-718.
    [10]
    张辰, 唐全骏, 陶莹, 等. 碳基功能材料在海洋领域中的应用进展[J]. 新型炭材料,2018,33(5):385-391. doi: 10.1016/S1872-5805(18)30007-6

    ZHANG Chen, TANG Quan-jun, TAO Ying, et al. Functional carbon materials in marine science and technology[J]. New Carbon Materials,2018,33(5):385-391. doi: 10.1016/S1872-5805(18)30007-6
    [11]
    Chandrashekara M, Avadhesh Y. Experimental study of exfoliated graphite solar thermal coating on a receiver with a scheffler dish and latent heat storage for desalination[J]. Solar Energy,2017,151:129-145. doi: 10.1016/j.solener.2017.05.027
    [12]
    WANG Xin-zhi, HE Yu-rong, CHENG Gong, et al. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid[J]. Energy Conversion and Management,2016,130:176-183. doi: 10.1016/j.enconman.2016.10.049
    [13]
    Kim K, YU S, AN C, et al. Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun illumination[J]. ACS Applied Materials & Interfaces,2018,10(18):15602-15608.
    [14]
    LI Tian, LIU He, ZHAO Xin-peng, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport[J]. Advanced Functional Materials,2018,28(16):1707134. doi: 10.1002/adfm.201707134
    [15]
    XU N, HU X, XU W, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials,2017,29(28):1606762. doi: 10.1002/adma.201606762
    [16]
    JIN M, WU Z, GUAN F, et al. Hierarchically designed three-dimensional composite structure on a cellulose-based solar steam generator[J]. ACS Applied Materials & Interfaces,2022,14(10):12284-12294.
    [17]
    ZHANG Qian, XU Wei-lin, WANG Xian-bao, et al. Carbon nanocomposites with high photothermal conversion efficiency[J]. Science China Materials,2018,61(7):905-914. doi: 10.1007/s40843-018-9250-x
    [18]
    JIANG F, LIU H, LI Y, et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation[J]. ACS Applied Materials & Interfaces,2018,10(1):1104-1112.
    [19]
    ZHAO F, ZHOU X, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology,2018,13(6):489-495. doi: 10.1038/s41565-018-0097-z
    [20]
    ZHOU Xing-yi, ZHAO Fei, YU Gui-hua, et al. Architecting highly hydratable polymer networks tune the water state for solar water purification[J]. Science Advances,2019,5:1-7.
    [21]
    Youssef Habibi, Lucian A. Lucia, Orlando J Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews,2010,110(6):3479-3500. doi: 10.1021/cr900339w
    [22]
    ZHANG X, YU H, YANG H, et al. Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution[J]. Journal of Colloid and Interface Science,2015,437:277-282. doi: 10.1016/j.jcis.2014.09.048
    [23]
    PING Z H, Nguyen Q T, CHEN S M, et al. States of water in different hydrophilic polymers-DSC and FTIR studies[J]. Polymer,2001,42:8461-8467. doi: 10.1016/S0032-3861(01)00358-5
    [24]
    Kudo K, Ishida J, Syuu G, et al. Structural changes of water in poly(vinyl alcohol) hydrogel during dehydration[J]. Journal of Chemical Physics,2014,140(4):1-9.
    [25]
    Sekine Y, Ikeda-Fukazawa T. Structural changes of water in a hydrogel during dehydration[J]. Journal of Chemical Physics,2009,130(3):1-8.
    [26]
    王红彦, 张轩铭, 王道龙, 等. 中国玉米芯资源量估算及其开发利用[J]. 中国农业资源与区划,2016,37(1):1-8.

    WANG Hong-yan, ZHANG Xuan-ming, WANG Dao-long, et al. Estimation of China's corn cob resources and its development and utilization[J]. Chinese Journal of Agricultural Resources and Regional Planning,2016,37(1):1-8.
    [27]
    李昌文, 张丽华, 纵伟, 等. 玉米芯的综合利用研究技术进展[J]. 食品研究与开发,2015,36(15):139-143. doi: 10.3969/j.issn.1005-6521.2015.15.034

    LI Chang-wen, ZHANG Li-hua, ZONG Wei, et al. Research progress of comprehensive utilization of corncob[J]. Food Research And Development,2015,36(15):139-143. doi: 10.3969/j.issn.1005-6521.2015.15.034
    [28]
    CAI Jie, ZHANG Li-na, ZHOU Jin-ping, et al. Novel fibers prepared from cellulose in NaOH/Urea aqueous solution[J]. Macromolecular Rapid Communications,2004,25(17):1558-1562. doi: 10.1002/marc.200400172
    [29]
    CAI Jie, ZHANG Li-na. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions[J]. Macromolecular Bioscience,2005,5(6):539-548. doi: 10.1002/mabi.200400222
    [30]
    LI Xiu-qiang, George Ni, Thomas Cooper, et al. Measuring conversion efficiency of solar vapor generation[J]. Joule,2019,3(8):1798-1803. doi: 10.1016/j.joule.2019.06.009
    [31]
    WANG L, HU S, Ullah M W, et al. Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels[J]. Carbohydrate Polymers,2020,249:1-11.
    [32]
    CUI X, Lee J J L, CHEN W N. Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics[J]. Scientific Reports,2019,9(1):1-9. doi: 10.1038/s41598-018-37186-2
    [33]
    ZHAO Dan, HUANG Jun-chao, ZHONG Yi, et al. High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking[J]. Advanced Functional Materials,2016,26(34):6279-6287. doi: 10.1002/adfm.201601645
    [34]
    LIU Yun-fang, SHEN Zeng-min, Kiyoshi Yokogawa, et al. Study of preparation and structures of the activated carbon nanotubes[J]. New Carbon Materials,2004,19(3):197-203.
    [35]
    闫学杰, 常东军, 李智辉, 等. (Pt/Sn)-碳纳米管复合物的电催化性能. 新型炭材料, 2011, 26(3): 229-236.

    YAN Xue-jie, CHANG Dong-jun, LI Zhi-hui, et al. Electrocatalytic properties of (Pt/Sn)-carbon nanotube composites[J]. New Carbon Materials, 2011, 26(3): 229-236.
    [36]
    LI Shuai, HE Ying-ying, GUAN Yu-peng, et al. Cellulose nanofibril-stabilized pickering emulsion and in situ polymerization lead to hybrid aerogel for high-efficiency solar steam generation[J]. ACS Applied Polymer Materials,2020,2(11):4581-4591. doi: 10.1021/acsapm.0c00674
    [37]
    李帅, 基于纤维素凝胶的太阳能水蒸发器的结构设计及其性能研究[D]. 2021, 桂林理工大学.

    LI Shuai, Structure design and performance research of solar vapor generator based on cellulose gel[D]. 2021, Guilin university of technology.
    [38]
    GUO Y, de Vasconcelos L S, Manohar N, et al. Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification[J]. Angewandte Chemie International Edition in English,2022,61(3):1-7.
    [39]
    郭明晰, 武晶斌, 李风海, 等. 用于太阳能驱动蒸汽发生的低成本荷叶基炭膜[J]. 2020, 35(4): 436-443.

    GUO Ming-xi, WU Jing-bin, Li Feng-hai, et al. A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New Carbon Materials, 2020, 35(4): 436-443.
    [40]
    LI J, DU M, LV G, et al. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization[J]. Advanced Materials,2018,30(49):1-7.
    [41]
    LI Ji-yan, ZHOU Xu, ZHANG Jia-yi, et al. Migration crystallization device based on biomass photothermal materials for efficient salt-rejection solar steam generation[J]. ACS Applied Energy Materials,2020,3(3):3024-3032. doi: 10.1021/acsaem.0c00126
    [42]
    WU Xuan, George Y Chen, ZHANG Wei, et al. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation[J]. Advanced Sustainable Systems,2017,1(6):1770102.
    [43]
    Seema Singh, Nitzan Shauloff, Raz Jelinek. Solar-enabled water remediation via recyclable carbon dot/hydrogel composites[J]. ACS Sustainable Chemistry & Engineering,2019,7(15):13186-13194.
    [44]
    ZHAO Xin-zhen, LIU Chang-kun. Overcoming salt crystallization with ionic hydrogel for accelerating solar evaporation[J]. Desalination,2020,482:114385.
    [45]
    YIN X, ZHANG Y, GUO Q, et al. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination[J]. ACS Applied Materials & Interfaces,2018,10(13):10998-11007.
    [46]
    SUN Yu, GAO Jian-ping, LIU Yu, et al. Copper sulfide-macroporous polyacrylamide hydrogel for solar steam generation[J]. Chemical Engineering Science,2019,207:516-526. doi: 10.1016/j.ces.2019.06.044
    [47]
    ZHANG Chang, XIAO Peng, NI Feng, et al. Converting pomelo peel into eco-friendly and low-consumption photothermic biomass sponge toward multifunctioal solar-to-heat conversion[J]. ACS Sustainable Chemistry & Engineering,2020,8(13):5328-5337.
    [48]
    YANG Lin, CHEN Guo-liang, ZHANG Nan, et al. Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):19311-19320.
    [49]
    JIA Juan, LIANG Wei-dong, SUN Han-xue, et al. Fabrication of bilayered attapulgite for solar steam generation with high conversion efficiency[J]. Chemical Engineering Journal,2019,361:999-1006. doi: 10.1016/j.cej.2018.12.157
    [50]
    LIU Yi-zhen, LIU Zhi-peng, HUANG Qi-chen, et al. A high-absorption and self-driven salt-resistant black gold nanoparticle-deposited sponge for highly efficient, salt-free, and long-term durable solar desalination[J]. Journal of Materials Chemistry A,2019,7(6):2581-2588. doi: 10.1039/C8TA10227A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(1055) PDF Downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return