Volume 37 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
WU Shuai, DI Fang, ZHENG Jin-gang, ZHAO Hong-wei, ZHANG Han, LI Li-xiang, GENG Xin, SUN Cheng-guo, YANG Hai-ming, ZHOU Wei-min, JU Dong-ying, AN Bai-gang. Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries. New Carbon Mater., 2022, 37(5): 802-826. doi: 10.1016/S1872-5805(22)60638-3
Citation: WU Shuai, DI Fang, ZHENG Jin-gang, ZHAO Hong-wei, ZHANG Han, LI Li-xiang, GENG Xin, SUN Cheng-guo, YANG Hai-ming, ZHOU Wei-min, JU Dong-ying, AN Bai-gang. Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries. New Carbon Mater., 2022, 37(5): 802-826. doi: 10.1016/S1872-5805(22)60638-3

Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries

doi: 10.1016/S1872-5805(22)60638-3
Funds:  Financial supports from National Natural Science Foundation of China (No. 51972156, 51872131, 51672117, 51672118) and Distinguished Professor of Liaoning Province (2017) are acknowledged
More Information
  • Author Bio:

    武 帅,博士生. E-mail:wushuai1174@126.com

  • Corresponding author: LI Li-xiang, Professor. E-mail: lxli2005@126.com; AN Bai-gang, Professor. E-mail: bgan@ustl.edu.cn
  • Received Date: 2022-06-29
  • Rev Recd Date: 2022-08-12
  • Available Online: 2022-08-15
  • Publish Date: 2022-10-01
  • A silicon anode with a high specific capacity is one of the most promising candidates for developing advanced rechargeable lithium-ion batteries (LIBs). However, the problems of low electrical conductivity, severe volume changes during use and an unstable solid electrolyte interface seriously hinder their use in LIBs. Although using the carbon materials used to construct Si/C composite anodes have demonstrated their advantages in improving the performance of Si-based anodes, the binder, another key component of the electrode, also has a significant effect on the electrochemical performance of a battery. A self-healing binder uses non-covalent and reversible covalent bonds to effectively improve the cycling stability of LIBs by repairing the internal/external damage caused by the huge volume change of a Si-based anode. As for the solid-state polymer electrolytes (SPEs) of flexible lithium batteries, the use of self-healing polymers can also quickly repair the damages or cracks in the SPEs, and have a promising prospect in the development of flexible and wearable electronics. The paper gives an overview of the synthesis, characterization and self-healing mechanisms of the self-healing polymer binders for use in Si and Si/C anodes and their recent application in flexible lithium batteries is briefly summarized. The related technical challenges and design requirements for self-healing polymer binders used in the Si and Si/C anodes of LIBs are discussed.
  • loading
  • [1]
    Liu J X, Wang J Q, Ni Y X, et al. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries[J]. Materials Today,2021,43:132-165. doi: 10.1016/j.mattod.2020.10.028
    [2]
    Son J M, Oh S, Bae S H, et al. A pair of NiCo2O4 and V2O5 nanowires directly grown on carbon fabric for highly bendable lithium-ion batteries[J]. Advanced Energy Materials,2019,9(18):1900477. doi: 10.1002/aenm.201900477
    [3]
    Xie L J, Tang C, Bi Z H, et al. Hard carbon anodes for next-generation Li-ion batteries: review and perspective[J]. Advanced Energy Materials,2021,11(38):2101650. doi: 10.1002/aenm.202101650
    [4]
    Li N, Sun M Z, Hwang S, et al. Non-equilibrium insertion of lithium ions into graphite[J]. Journal of Materials Chemistry A,2021,9(20):12080-12086. doi: 10.1039/D1TA02836G
    [5]
    Li X, Wang X Y, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36(1):106-114. doi: 10.1016/S1872-5805(21)60008-2
    [6]
    Jin X, Han Y H, Zhang Z F, et al. Mesoporous single-crystal lithium titanate enabling fast-vharging Li-ion batteries[J]. Advanced Materials,2022,34(18):2109356. doi: 10.1002/adma.202109356
    [7]
    Huang B, Pan Z F, Su X Y, et al. Tin-based materials as versatile anodes for alkali (earth)-ion batteries[J]. Journal of Power Sources,2018,395(15):41-59.
    [8]
    Zhu R Y, Wang Z H, Hu X J, et al. Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries[J]. Advanced Functional Materials,2021,31(33):2101487. doi: 10.1002/adfm.202101487
    [9]
    Cui Q, Zhong Y, Lu P, et al. Recent advances in designing high‐capacity anode nanomaterials for Li‐ion batteries and their atomic‐scale storage mechanism studies[J]. Advanced Science,2018,5(7):1700902. doi: 10.1002/advs.201700902
    [10]
    Huang J, Dai Q, Cui C, et al. Cake-like porous Fe3O4@C nanocomposite as high-performance anode for Li-ion battery[J]. Journal of Electroanalytical Chemistry,2022:116508.
    [11]
    Bresser D, Hosoi K, Howell D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. Journal of Power Sources,2018,382(1):176-178.
    [12]
    Kim N, Chae S, Ma J, et al. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes[J]. Nature Communications,2017,8(812):1-10.
    [13]
    Bitew Z, Tesemma M, Beyene Y, et al. Nano-structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives[J]. Sustainable Energy & Fuels,2022,6(4):1014-1050.
    [14]
    Lee S W, McDowell M T, Choi J W, et al. Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Letters,2011,11(7):3034-3039. doi: 10.1021/nl201787r
    [15]
    Kwon T W, Choi J W, Coskun A. The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews,2018,47(6):2145-2164. doi: 10.1039/C7CS00858A
    [16]
    Jin Y, Zhu B, Lu Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials,2017,7(23):1700715. doi: 10.1002/aenm.201700715
    [17]
    Yan Z, Jiang J, Zhang Y, et al. Scalable and low-cost synthesis of porous silicon nanoparticles as high-performance lithium-ion battery anode[J]. Materials Today Nano,2022,18:100175. doi: 10.1016/j.mtnano.2022.100175
    [18]
    Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. Acs Nano,2012,6(2):1522-1531. doi: 10.1021/nn204476h
    [19]
    Zong L Q, Jin Y, Liu C, et al. Precise perforation and scalable production of Si particles from low-grade sources for high-performance lithium ion battery anodes[J]. Nano Letters,2016,16(11):7210-7215. doi: 10.1021/acs.nanolett.6b03567
    [20]
    Du L L, Wu W, Luo C, et al. Lignin derived Si@C composite as a high performance anode material for lithium ion batteries[J]. Solid State Ionics,2018,319:77-82. doi: 10.1016/j.ssi.2018.01.039
    [21]
    Qi Z Y, Dai L Q, Wang Z F, et al. Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery[J]. New Carbon Materials,2022,37(1):245-255. doi: 10.1016/S1872-5805(22)60580-8
    [22]
    Obrovac M N. Si-alloy negative electrodes for Li-ion batteries[J]. Current Opinion in Electrochemistry,2018,9:8-17. doi: 10.1016/j.coelec.2018.02.002
    [23]
    Rage B, Delbegue D, Louvain N, et al. Engineering of silicon core-shell structures for Li-ion anodes[J]. Chemistry A European Journal,2021,27(66):16275-16290. doi: 10.1002/chem.202102470
    [24]
    Jin H C, Sun Q, Wang J T, et al. Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure[J]. New Carbon Materials,2021,36(2):390-398. doi: 10.1016/S1872-5805(21)60026-4
    [25]
    Yang L Y, Li H Z, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries[J]. Scientific Reports,2015,5(1):10908. doi: 10.1038/srep10908
    [26]
    Son Y, Ma J, Kim N, et al. Quantification of pseudocapacitive contribution in nanocage-shaped silicon-carbon composite anode[J]. Advanced Energy Materials,2019,9(11):1803480. doi: 10.1002/aenm.201803480
    [27]
    Yang Z W, Qiu L, Zhang M K, et al. Carbon dioxide solid-phase embedding reaction of silicon-carbon nanoporous composites for lithium-ion batteries[J]. Chemical Engineering Journal,2021,423(1):130127.
    [28]
    Liu G P, Jiao T P, Cheng Y, et al. Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive[J]. Acs Applied Energy Materials,2021,4(9):10323-10332. doi: 10.1021/acsaem.1c02265
    [29]
    Yang Y Z, Yang Z, Xu Y S, et al. Synergistic effect of vinylene carbonate (VC) and LiNO3 as functional additives on interphase modulation for high performance SiO anodes[J]. Journal of Power Sources,2021,514(1):230595.
    [30]
    Xu C, Lindgren F, Philippe B, et al. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chemistry of Materials,2015,27(7):2591-2599. doi: 10.1021/acs.chemmater.5b00339
    [31]
    Berhaut C L, Dominguez D Z, Tomasi D, et al. Prelithiation of silicon/graphite composite anodes: benefits and mechanisms for long-lasting Li-ion batteries[J]. Energy Storage Materials,2020,29:190-197. doi: 10.1016/j.ensm.2020.04.008
    [32]
    Shen Y F, Zhang J M, Pu Y F, et al. Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery[J]. Acs Energy Letters,2019,4(7):1717-1724. doi: 10.1021/acsenergylett.9b00889
    [33]
    Kim H J, Choi S, Lee S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Letters,2016,16(1):282-288. doi: 10.1021/acs.nanolett.5b03776
    [34]
    Kim S, Jeong Y K, Wang Y, et al. A "sticky" mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries[J]. Advanced Materials,2018,30(26):1707594. doi: 10.1002/adma.201707594
    [35]
    Li S, Liu Y M, Zhang Y C, et al. A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries[J]. Journal of Power Sources,2021,485(15):229331.
    [36]
    Kim W J, Kang J G, Kim D W. Blood clot-inspired viscoelastic fibrin gel: new aqueous binder for silicon anodes in lithium ion batteries[J]. Energy Storage Materials,2022,45:730-740. doi: 10.1016/j.ensm.2021.12.024
    [37]
    Kim J, Park Y K, Kim H, et al. Ambidextrous polymeric binder for silicon anodes in lithium-ion batteries[J]. Chemistry of Materials,2022,34(13):5791-5798. doi: 10.1021/acs.chemmater.2c00220
    [38]
    Kwon T W, Jeong Y K, Lee I, et al. Systematic molecular-level design of binders incorporating meldrum's acid for silicon anodes in lithium rechargeable batteries[J]. Advanced Materials,2014,26(47):7979-7985. doi: 10.1002/adma.201402950
    [39]
    Liu T F, Tong C J, Wang B, et al. Trifunctional electrode additive for high active material content and volumetric lithium-ion electrode densities[J]. Advanced Energy Materials,2019,9(10):1803390. doi: 10.1002/aenm.201803390
    [40]
    Chen H, Ling M, Hencz L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews,2018,118(18):8936-8982. doi: 10.1021/acs.chemrev.8b00241
    [41]
    Yang Y, Wu S, Zhang Y, et al. Towards efficient binders for silicon based lithium-ion battery anodes[J]. Chemical Engineering Journal,2021,406(15):126807.
    [42]
    Xu J, Ding C, Chen P, et al. Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies[J]. Applied Physics Reviews,2020,7(3):031304. doi: 10.1063/5.0008206
    [43]
    Zhang Y, Khanbareh H, Roscow J, et al. Self-healing of materials under high electrical stress[J]. Matter,2020,3(4):989-1008. doi: 10.1016/j.matt.2020.07.020
    [44]
    Kwon T W, Choi J W, Coskun A. Prospect for supramolecular chemistry in high-energy-density rechargeable batteries[J]. Joule,2019,3(3):662-682. doi: 10.1016/j.joule.2019.01.006
    [45]
    Yang Y, Urban M W. Self-healing of polymers via supramolecular chemistry[J]. Advanced Materials Interfaces,2018,5(17):1800384. doi: 10.1002/admi.201800384
    [46]
    Zhang X, Chen P, Zhao Y, et al. High-performance self-healing polyurethane binder based on aromatic disulfide bonds and hydrogen bonds for the sulfur cathode of lithium-sulfur batteries[J]. Industrial & Engineering Chemistry Research,2021,60(32):12011-12020.
    [47]
    Taynton P, Ni H G, Zhu C P, et al. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks[J]. Advanced Materials,2016,28(15):2904-2909. doi: 10.1002/adma.201505245
    [48]
    Chen Y, Tang Z H, Zhang X H, et al. Covalently cross-linked elastomers with self-healing and malleable abilities enabled by boronic ester bonds[J]. Acs Applied Materials & Interfaces,2018,10(28):24224-24231.
    [49]
    Li J, Wang Y, Xie X, et al. A novel multi-functional binder based on double dynamic bonds for silicon anode of lithium-ion batteries[J]. Electrochimica Acta,2022,425:140620. doi: 10.1016/j.electacta.2022.140620
    [50]
    Chen L, Wang S, Guo Z, et al. Double dynamic bonds tough hydrogel with high self‐healing properties based on acylhydrazone bonds and borate bonds[J]. Polymers for Advanced Technologies,2022,33(8):2528-2541. doi: 10.1002/pat.5707
    [51]
    Wei Y Y, Ma X Y. The self-healing cross-linked polyurethane by Diels-Alder polymerization[J]. Advances in Polymer Technology,2018,37(6):1987-1993. doi: 10.1002/adv.21857
    [52]
    Deng L, Zheng Y, Zheng X, et al. Design criteria for silicon‐based anode binders in half and full cells[J]. Advanced Energy Materials,2022:2200850. doi: 10.1002/aenm.202200850
    [53]
    Ezeigwe E R, Dong L, Manjunatha R, et al. A review of self-healing electrode and electrolyte materials and their mitigating degradation of lithium batteries[J]. Nano Energy,2021,84:105907. doi: 10.1016/j.nanoen.2021.105907
    [54]
    Liu M, Chen P, Pan X, et al. Synergism of flame‐retardant, self‐healing, high‐conductive and polar to a multi‐functional binder for lithium‐sulfur batteries[J]. Advanced Functional Materials,2022:2205031. doi: 10.1002/adfm.202205031
    [55]
    Luo P, Lai P, Huang Y, et al. A highly stretchable and self‐healing composite binder based on the hydrogen‐bond network for silicon anodes in high‐energy‐density lithium‐ion batteries[J]. ChemElectroChem,2022,9(12):e202200155.
    [56]
    Kim J, Park K, Cho Y, et al. Zn2+-imidazole coordination crosslinks for elastic polymeric binders in high-capacity silicon electrodes[J]. Advanced Science,2021,8(9):2004290. doi: 10.1002/advs.202004290
    [57]
    Kim J, Choi J, Park K, et al. Host-guest interlocked complex binder for silicon-graphite composite electrodes in lithium ion batteries[J]. Advanced Energy Materials,2022,12(11):2103718. doi: 10.1002/aenm.202103718
    [58]
    Jeong Y K, Kwon T W, Lee I, et al. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes[J]. Energy & Environmental Science,2015,8(4):1224-1230.
    [59]
    Kuo T C, Chiou C Y, Li C C, et al. In situ cross-linked poly(ether urethane) elastomer as a binder for high-performance Si anodes of lithium-ion batteries[J]. Electrochimica Acta,2019,327(10):135011.
    [60]
    Wang S Y, Urban M W. Self-healing polymers[J]. Nature Reviews Materials,2020,5(8):562-583. doi: 10.1038/s41578-020-0202-4
    [61]
    Luo W, Chen X Q, Xia Y, et al. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries[J]. Advanced Energy Materials,2017,7(24):1701083. doi: 10.1002/aenm.201701083
    [62]
    Xu K, Liu X F, Guan K K, et al. Research progress on coating structure of silicon anode materials for lithium-ion batteries[J]. Chemsuschem,2021,14(23):5135-5160. doi: 10.1002/cssc.202101837
    [63]
    Uctepe A, Demir E, Tekin B, et al. Prompt microwave-assisted synthesis of carbon coated Si nanocomposites as anode for lithium-ion batteries[J]. Solid State Ionics,2020,354:115409. doi: 10.1016/j.ssi.2020.115409
    [64]
    Nava G, Schwan J, Boebinger M G, et al. Silicon-core-carbon-shell nanoparticles for lithium-ion batteries: rational comparison between amorphous and graphitic carbon coatings[J]. Nano Letters,2019,19(10):7236-7245. doi: 10.1021/acs.nanolett.9b02835
    [65]
    Liu S W, Xu W H, Ding C H, et al. Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon[J]. Applied Surface Science,2019,494:94-100. doi: 10.1016/j.apsusc.2019.07.193
    [66]
    Ding N W, Chen Y, Li R, et al. Pomegranate structured C@pSi/rGO composite as high performance anode materials of lithium-ion batteries[J]. Electrochimica Acta,2021,367:137491. doi: 10.1016/j.electacta.2020.137491
    [67]
    Huang H J, Rao P H, Choi W M. Carbon-coated silicon/crumpled graphene composite as anode material for lithium-ion batteries[J]. Curr Appl Phys,2019,19(12):1349-1354. doi: 10.1016/j.cap.2019.08.024
    [68]
    Wang K, Pei S E, He Z S, et al. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes[J]. Chemical Engineering Journal,2019,356:272-281. doi: 10.1016/j.cej.2018.09.027
    [69]
    Dou F, Shi L Y, Chen G R, et al. Silicon/carbon composite anode materials for lithium-ion batteries[J]. Electrochemical Energy Reviews,2019,2(1):149-198. doi: 10.1007/s41918-018-00028-w
    [70]
    Liu Z J, Guo P Q, Liu B L, et al. Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode[J]. Applied Surface Science,2017,396:41-47. doi: 10.1016/j.apsusc.2016.11.045
    [71]
    Wu J, Tu W M, Zhang Y, et al. Poly-dopamine coated graphite oxide/silicon composite as anode of lithium ion batteries[J]. Powder Technology,2017,311:200-205. doi: 10.1016/j.powtec.2017.01.063
    [72]
    Li G, Huang L B, Yan M Y, et al. An integral interface with dynamically stable evolution on micron-sized SiOx particle anode[J]. Nano Energy,2020,74:104890. doi: 10.1016/j.nanoen.2020.104890
    [73]
    Ren W F, Li J T, Huang Z G, et al. Fabrication of Si nanoparticles@conductive carbon framework@polymer composite as high-areal-capacity anode of lithium-ion batteries[J]. Chemelectrochem,2018,5(21):3258-3265. doi: 10.1002/celc.201800834
    [74]
    Wang C, Wu H, Chen Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nature Chemistry,2013,5(12):1042-1048. doi: 10.1038/nchem.1802
    [75]
    Kim D, Hyun S, Han S M. Freestanding silicon microparticle and self-healing polymer composite design for effective lithiation stress relaxation[J]. Journal of Materials Chemistry A,2018,6(24):11353-11361. doi: 10.1039/C7TA11269F
    [76]
    Sun Y M, Lopez J, Lee H W, et al. A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer[J]. Advanced Materials,2016,28(12):2455-2461. doi: 10.1002/adma.201504723
    [77]
    Pramanik M, Tsujimoto Y, Malgras V, et al. Mesoporous iron phosphonate electrodes with crystalline frameworks for lithium-ion batteries[J]. Chemistry of Materials,2015,27(3):1082-1089. doi: 10.1021/cm5044045
    [78]
    Jiao X, Yin J, Xu X, et al. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries[J]. Advanced Functional Materials,2021,31(3):2005699. doi: 10.1002/adfm.202005699
    [79]
    Liu J, Li X, Yang X, et al. Recent advances in self‐healable intelligent materials enabled by supramolecular crosslinking design[J]. Advanced Intelligent Systems,2021,3(5):2000183. doi: 10.1002/aisy.202000183
    [80]
    Yang Y, Wu S, Zhang Y, et al. Towards efficient binders for silicon based lithium-ion battery anodes[J]. Chemical Engineering Journal,2021,406:126807. doi: 10.1016/j.cej.2020.126807
    [81]
    Webber M J, Appel E A, Meijer E W, et al. Supramolecular biomaterials[J]. Nature Materials,2016,15(1):13-26. doi: 10.1038/nmat4474
    [82]
    Herbst F, Dohler D, Michael P, et al. Self-healing polymers via supramolecular forces[J]. Macromol Rapid Commun,2013,34(3):203-220. doi: 10.1002/marc.201200675
    [83]
    Enke M, Dhler D, Bode S, et al. Intrinsic self-healing polymers based on supramolecular interactions: state of the art and future directions[J]. Springer International Publishing,2015,273:59-112.
    [84]
    Thangavel G, Tan M, Lee P S. Advances in self-healing supramolecular soft materials and nanocomposites[J]. Nano Convergence,2019,6(29):1-18.
    [85]
    Su Y, Feng X, Zheng R, et al. Binary network of conductive elastic polymer constraining nanosilicon for a high-performance lithium-ion battery[J]. ACS nano,2021,15(9):14570-14579. doi: 10.1021/acsnano.1c04240
    [86]
    Xu Z X, Yang J, Zhang T, et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule,2018,2(5):950-961. doi: 10.1016/j.joule.2018.02.012
    [87]
    Cordier P, Tournilhac F, Soulie-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature,2008,451(7181):977-980. doi: 10.1038/nature06669
    [88]
    Li J J, Zhang G Z, Yang Y, et al. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries[J]. Journal of Power Sources,2018,406:102-109. doi: 10.1016/j.jpowsour.2018.10.057
    [89]
    Pan Y Y, Gao S L, Sun F Y, et al. Polymer binders constructed through dynamic noncovalent bonds for high-capacity silicon-based anodes[J]. Chemistry A European Journal,2019,25(47):10976-10994. doi: 10.1002/chem.201900988
    [90]
    Zhang G Z, Yang Y, Chen Y H, et al. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries[J]. Small,2018,14(29):1801189. doi: 10.1002/smll.201801189
    [91]
    Yang J F, Zhang L C, Zhang T, et al. Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries[J]. Electrochemistry Communications,2018,87:22-26. doi: 10.1016/j.elecom.2017.12.023
    [92]
    Liu Z M, Fang C, He X, et al. In situ-formed novel elastic network binder for a silicon anode in lithium-ion batteries[J]. Acs Applied Materials & Interfaces,2021,13(39):46518-46525.
    [93]
    Kwon T, Jeong Y K, Deniz E, et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries[J]. Acs Nano,2015,9(11):11317-11324. doi: 10.1021/acsnano.5b05030
    [94]
    Luo Y R. Comprehensive Handbook of Chemical Bond Energies [M]. CRC press, 2007.
    [95]
    Li C H, Zuo J L. Self-healing polymers based on coordination bonds[J]. Advanced Materials,2020,32(27):1903762.
    [96]
    Jeong Y K, Choi J W. Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes[J]. Acs Nano,2019,13(7):8364-8373. doi: 10.1021/acsnano.9b03837
    [97]
    Varley R J, Shen S, Zwaag S V D. The effect of cluster plasticisation on the self healing behaviour of ionomers[J]. Polymer,2010,51(3):679-686. doi: 10.1016/j.polymer.2009.12.025
    [98]
    Kalista S J, Ward T C. Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers[J]. Journal of The Royal Society Interface,2007,4(13):405-411. doi: 10.1098/rsif.2006.0169
    [99]
    Kang S, Yang K, White S R, et al. Silicon composite electrodes with dynamic ionic bonding[J]. Advanced Energy Materials,2017,7(17):1700045. doi: 10.1002/aenm.201700045
    [100]
    Jin B Y, Wang D Y, Zhu J, et al. A self-healable polyelectrolyte binder for highly stabilized sulfur, silicon, and silicon oxides electrodes[J]. Advanced Functional Materials,2021,31(41):2104433. doi: 10.1002/adfm.202104433
    [101]
    Ding Z J, Yuan L, Guan Q B, et al. A reconfiguring and self-healing thermoset epoxy/chain-extended bismaleimide resin system with thermally dynamic covalent bonds[J]. Polymer,2018,147:170-182. doi: 10.1016/j.polymer.2018.06.008
    [102]
    Ren J, Dong X, Duan Y, et al. Synthesis and self‐healing investigation of waterborne polyurethane based on reversible covalent bond[J]. Journal of Applied Polymer Science,2022,139(20):52144. doi: 10.1002/app.52144
    [103]
    Liu H, Wu Q, Guan X, et al. Ionically conductive self-healing polymer binders with poly (ether-thioureas) segments for high-performance silicon anodes in lithium-ion batteries[J]. ACS Applied Energy Materials,2022,5(4):4934-4944. doi: 10.1021/acsaem.2c00329
    [104]
    Dahlke J, Zechel S, Hager M, et al. How to design a self‐healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials[J]. Advanced Materials Interfaces,2018,5(17):1800051. doi: 10.1002/admi.201800051
    [105]
    Nam J, Jang W, Rajeev K K, et al. Ion-conductive self-healing polymer network based on reversible imine bonding for Si electrodes[J]. Journal of Power Sources,2021,499:229968. doi: 10.1016/j.jpowsour.2021.229968
    [106]
    Ryu J, Kim S, Kim J, et al. Room-temperature crosslinkable natural polymer binder for high-rate and stable silicon anodes[J]. Advanced Functional Materials,2020,30(9):1908433. doi: 10.1002/adfm.201908433
    [107]
    Rajeev K K, Nam J, Kim E, et al. A self-healable polymer binder for Si anodes based on reversible Diels-Alder chemistry[J]. Electrochimica Acta,2020,364:137311. doi: 10.1016/j.electacta.2020.137311
    [108]
    Mo P, Hu Z, Mo Z, et al. Fast self-healing and self-cleaning anticorrosion coating based on dynamic reversible imine and multiple hydrogen bonds[J]. ACS Applied Polymer Materials,2022,4(7):4709-4718.
    [109]
    Mai W, Yu Q, Han C, et al. Self-healing materials for energy-storage devices[J]. Advanced Functional Materials,2020,30(24):1909912. doi: 10.1002/adfm.201909912
    [110]
    Röttger M, Domenech T, Weegen R V D, et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis[J]. Science,2017,356(6333):62-65. doi: 10.1126/science.aah5281
    [111]
    Cash J J, Kubo T, Bapat A P, et al. Room-temperature self-healing polymers based on dynamic-covalent boronic esters[J]. Macromolecules,2015,48(7):2098-2106. doi: 10.1021/acs.macromol.5b00210
    [112]
    Perera M M, Ayres N. Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels[J]. Polymer Chemistry,2020,11:1410-1423. doi: 10.1039/C9PY01694E
    [113]
    Chang J, Huang Q, Gao Y, et al. Pathways of developing high-energy-density flexible lithium batteries[J]. Advanced Materials,2021,33(46):2004419. doi: 10.1002/adma.202004419
    [114]
    Li R, Fang Z, Wang C, et al. Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries[J]. Chemical Engineering Journal,2022,430:132706. doi: 10.1016/j.cej.2021.132706
    [115]
    Wang C, Yang Y, Li R, et al. Highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safety flexible lithium batteries[J]. Journal of Materials Chemistry A,2021,9:4758-4769. doi: 10.1039/D0TA10745J
    [116]
    Zhu X, Fang Z, Deng Q, et al. Poly(ionic liquid)@PEGMA block polymer initiated microphase separation architecture in poly(ethylene oxide)-based solid-state polymer electrolyte for flexible and self-healing lithium batteries[J]. ACS Sustainable Chemistry & Engineering,2022,10(13):4173-4185.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article Views(2266) PDF Downloads(368) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return