Factors that influence the performance of hydrogen detectors based on single-wall carbon nanotubes
-
Graphical Abstract
-
Abstract
Single-wall carbon nanotubes (SWCNTs) have been used to fabricate hydrogen gas (H2) detectors for several decades. It has been proven that they barely interact with H2 so that numerous modifications are used to assist this function. Additives include metals, metal oxides, polymers etc. Previous research suggests that the presence of functional groups on the SWCNTs may improve the response by several orders of magnitude. Recently, many different novel structures have been exploited, and structural parameters of the SWCNTs, such as diameter and chirality, also influence the performance of the detectors. Modifications of the SWCNTs are classified and other factors that influence the performance are also discussed, with the aim of accelerating the manufacture of detectors with a high responsivity and low limit of detection.
-
-