Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
WANG Man, CHE Xiao-gang, LIU Si-yu, YANG Juan. A review of carbon-based cathode materials for zinc-ion capacitors[J]. NEW CARBOM MATERIALS, 2021, 36(1): 155-166. doi: 10.19869/j.ncm.1007-8827.20200264
Citation: WANG Man, CHE Xiao-gang, LIU Si-yu, YANG Juan. A review of carbon-based cathode materials for zinc-ion capacitors[J]. NEW CARBOM MATERIALS, 2021, 36(1): 155-166. doi: 10.19869/j.ncm.1007-8827.20200264

A review of carbon-based cathode materials for zinc-ion capacitors

doi: 10.19869/j.ncm.1007-8827.20200264
Funds:  National Natural Science Foundation of China (51802251).
More Information
  • Corresponding author: YANG Juan, Ph. D, Associated professor. E-mail: juanyang@xjtu.edu.cn
  • Received Date: 2020-12-29
  • Rev Recd Date: 2021-01-13
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Zinc-ion capacitors are high-performance hybrid capacitors that have great advantages because of the abundance of zinc resources and their high theoretical capacitance. As a result they have become a hot research topic in the field of energy storage devices. Carbon-based materials are usually used as the cathode materials for these capacitors because of the wide range of available materials, and their easily tuned surface properties and simple fabrication. This review summarizes recent research progress on carbon cathode materials for flexible/non-flexible zinc ion capacitors, and gives a concise description of their novel structures and outstanding performance. It then discusses research on the energy storage mechanisms in the cathode materials and suggests directions for the development of carbon cathodes for zinc-ion capacitors.
  • loading
  • [1]
    Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews,2017,46:3529-3614. doi: 10.1039/C6CS00776G
    Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy,2016,1:16070. doi: 10.1038/nenergy.2016.70
    Lukatskaya M R, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nature Communications,2016,7:12647. doi: 10.1038/ncomms12647
    Li W, Liu J, Zhao D. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials,2016,1:16023. doi: 10.1038/natrevmats.2016.23
    González A, Goikolea E, Barrena J A, et al. Review on supercapacitors: Technologies and materials[J]. Renewable and Sustainable Energy Reviews,2016,58:1189-1206. doi: 10.1016/j.rser.2015.12.249
    Borenstein A, Hanna O, Attias R, et al. Carbon-based composite materials for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A,2017,5:12653-12672. doi: 10.1039/C7TA00863E
    Choudhary N, Li C, Moore J, et al. Asymmetric supercapacitor electrodes and devices[J]. Advanced Materials,2017,29:1605336. doi: 10.1002/adma.201605336
    Meng Q, Cai K, Chen Y, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy,2017,36:268-285. doi: 10.1016/j.nanoen.2017.04.040
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7:845-854. doi: 10.1038/nmat2297
    Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41:797-828. doi: 10.1039/C1CS15060J
    Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials,2014,4:1300816. doi: 10.1002/aenm.201300816
    Zuo W, Li R, Zhou C, et al. Battery-supercapacitor hybrid devices: Recent progress and future prospects[J]. Advanced Science,2017,4:1600539. doi: 10.1002/advs.201600539
    Li B, Dai F, Xiao Q, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy & Environmental Science,2016,9:102-106.
    Shen L, Yu L, Yu X Y, et al. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors[J]. Angewandte Chemie International Edition,2015,54:1868-1872. doi: 10.1002/anie.201409776
    Choi N S, Chen Z, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition,2012,51:9994-10024. doi: 10.1002/anie.201201429
    Aravindan V, Gnanaraj J, Lee Y S, et al. Insertion-type electrodes for nonaqueous Li-ion capacitors[J]. Chemical Reviews,2014,114:11619-11635. doi: 10.1021/cr5000915
    Ding J, Wang H, Li Z, et al. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors[J]. Energy & Environmental Science,2015,8:941-955.
    Le Z, Liu F, Nie P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors[J]. ACS Nano,2017,11:2952-2960. doi: 10.1021/acsnano.6b08332
    Ding J, Hu W, Paek E, et al. Review of hybrid ion capacitors: From aqueous to lithium to sodium[J]. Chemical Reviews,2018,118:6457-6498. doi: 10.1021/acs.chemrev.8b00116
    Chen J, Yang B, Hou H, et al. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor[J]. Advanced Energy Materials,2019,9:1803894. doi: 10.1002/aenm.201803894
    Li Z, An Y, Dong S, et al. Progress on zinc ion hybrid supercapacitors: Insights and challenges[J]. Energy Storage Materials,2020,31:252-266. doi: 10.1016/j.ensm.2020.06.014
    Dong L, Ma X, Li Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors[J]. Energy Storage Materials,2018,13:96-102. doi: 10.1016/j.ensm.2018.01.003
    Li H, Tang Z, Liu Z, et al. Evaluating flexibility and wearability of flexible energy storage devices[J]. Joule,2019,3:613-619. doi: 10.1016/j.joule.2019.01.013
    Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications,2017,8:405. doi: 10.1038/s41467-017-00467-x
    Kundu D, Adams B D, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy,2016,1:16119. doi: 10.1038/nenergy.2016.119
    Seo M J, Yoo J C. Fully automated lab-on-a-disc platform for loop-mediated isothermal amplification using micro-carbon-activated cell lysis[J]. Sensors,2020:20.
    Vijayakumar M, Rohita D S, Rao T N, et al. Electrode mass ratio impact on electrochemical capacitor performance[J]. Electrochimica Acta,2019,298:347-359. doi: 10.1016/j.electacta.2018.12.034
    An G H. Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon[J]. Applied Surface Science,2020,530:147220. doi: 10.1016/j.apsusc.2020.147220
    Lee Y G, An G H. Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors[J]. ACS Applied Materials & Interfaces,2020,12:41342-41349.
    Yang J, Yu C, Fan X, et al. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors[J]. Energy & Environmental Science,2016,9:1299-1307.
    Song Y, Yang J, Wang K, et al. In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application[J]. Carbon,2016,96:955-964. doi: 10.1016/j.carbon.2015.10.060
    Peng H, Ma G, Sun K, et al. Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors[J]. Electrochimica Acta,2016,190:862-871. doi: 10.1016/j.electacta.2015.12.195
    Wei F, He X, Bi H, et al. 3D hierarchical carbons composed of cross-linked porous carbon nanosheets for supercapacitors[J]. Journal of Power Sources,2020,474:228698. doi: 10.1016/j.jpowsour.2020.228698
    Zhu Y, Ye X, Jiang H, et al. Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes[J]. Journal of Power Sources,2020,453:227851. doi: 10.1016/j.jpowsour.2020.227851
    Sun G, Xiao Y, Lu B, et al. Hybrid energy storage device: Combination of zinc-ion supercapacitor and zinc–air battery in mild electrolyte[J]. ACS Applied Materials & Interfaces,2020,12:7239-7248.
    Pan Z, Lu Z, Xu L, et al. A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications[J]. Applied Surface Science,2020,510:145384. doi: 10.1016/j.apsusc.2020.145384
    Bi Z, Kong Q, Cao Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A,2019,7:16028-16045. doi: 10.1039/C9TA04436A
    Yin J, Zhang W, Wang W, et al. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes[J]. Advanced Energy Materials,2020,10:2001705. doi: 10.1002/aenm.202001705
    Yuksel R, Buyukcakir O, Panda PK, et al. Necklace-like nitrogen-doped tubular carbon 3D frameworks for electrochemical energy storage[J]. Advanced Functional Materials,2020,30:1909725. doi: 10.1002/adfm.201909725
    Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal-organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials,2019,31:1804903. doi: 10.1002/adma.201804903
    Chen S, Yang G, Zhao X, et al. Hollow mesoporous carbon spheres for high performance symmetrical and aqueous zinc-ion hybrid supercapacitor[J]. Frontiers in Chemistry,2020,8:663. doi: 10.3389/fchem.2020.00663
    Liu P, Liu W, Huang Y, et al. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage[J]. Energy Storage Materials,2020,25:858-865. doi: 10.1016/j.ensm.2019.09.004
    Fei R, Wang H, Wang Q, et al. In situ hard-template synthesis of hollow bowl-like carbon: A potential versatile platform for sodium and zinc ion capacitors[J]. Advanced Energy Materials,2020,n/a:2002741.
    Jain A, Balasubramanian R, Srinivasan M P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review[J]. Chemical Engineering Journal,2016,283:789-805. doi: 10.1016/j.cej.2015.08.014
    Wang H, Wang M, Tang Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications[J]. Energy Storage Materials,2018,13:1-7. doi: 10.1016/j.ensm.2017.12.022
    Wang D, Wang S, Lu Z. S-doped 3D porous carbons derived from potassium thioacetate activation strategy for zinc-ion hybrid supercapacitor applications[J]. International Journal of Energy Research,2020:1-13.
    Yu P, Zeng Y, Zeng Y, et al. Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture[J]. Electrochimica Acta,2019,327:134999. doi: 10.1016/j.electacta.2019.134999
    He L, Liu Y, Li C, et al. A low-cost Zn-based aqueous supercapacitor with high energy density[J]. ACS Applied Energy Materials,2019,2:5835-5842. doi: 10.1021/acsaem.9b00981
    Zhang L, Han D, Tao Y, et al. Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2020,8:461-469. doi: 10.1039/C9TA09941G
    Ma H, Chen H, Wu M, et al. Maximization of spatial charge density: An approach to ultrahigh energy density of capacitive charge storage[J]. Angewandte Chemie International Edition,2020,59:14541-14549. doi: 10.1002/anie.202005270
    Liu W, Song M S, Kong B, et al. Flexible and stretchable energy storage: Recent advances and future perspectives[J]. Advanced Materials,2017,29:1603436. doi: 10.1002/adma.201603436
    Dubal D P, Chodankar N R, Kim D H, et al. Towards flexible solid-state supercapacitors for smart and wearable electronics[J]. Chemical Society Reviews,2018,47:2065-2129. doi: 10.1039/C7CS00505A
    Ni T, Wang S, Shi J, et al. Highly flexible and self-healable zinc-ion hybrid supercapacitors based on mwcnts-rgo fibers[J]. Advanced Materials Technologies,2020,5:2000268.
    Zhang X, Pei Z, Wang C, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics[J]. Small,2019,15:1903817. doi: 10.1002/smll.201903817
    Lu Y, Li Z, Bai Z, et al. High energy-power zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J]. Nano Energy,2019,66:104132. doi: 10.1016/j.nanoen.2019.104132
    Zheng Y, Zhao W, Jia D, et al. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material[J]. Chemical Engineering Journal,2020,387:124161. doi: 10.1016/j.cej.2020.124161
    Li Z, Chen D, An Y, et al. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon[J]. Energy Storage Materials,2020,28:307-314. doi: 10.1016/j.ensm.2020.01.028
    Zeng J, Dong L, Sun L, et al. Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units[J]. Nano-Micro Letters,2020,13:19.
    Jian Z, Yang N, Vogel M, et al. Flexible diamond fibers for high-energy-density zinc-ion supercapacitors[J]. Advanced Energy Materials,2020,10:2002202.
    Li X, Li M, Yang Q, et al. Vertically aligned Sn4+ preintercalated Ti2CTx mxene sphere with enhanced Zn ion transportation and superior cycle lifespan[J]. Advanced Energy Materials,2020,10:2001394. doi: 10.1002/aenm.202001394
    Yang L, Song L, Feng Y, et al. Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor[J]. Journal of Materials Chemistry A,2020,8:12314-12318. doi: 10.1039/D0TA04360E
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (148) PDF downloads(52) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint