SHEN Wei, LI Feng, LIU Chang, YIN Li-chang. Changing the chirality of single-wall carbon nanotubes during epitaxial growth: A density functional theory study. New Carbon Mater., 2016, 31(5): 525-531. doi: 10.1016/S1872-5805(16)60030-6
Citation: SHEN Wei, LI Feng, LIU Chang, YIN Li-chang. Changing the chirality of single-wall carbon nanotubes during epitaxial growth: A density functional theory study. New Carbon Mater., 2016, 31(5): 525-531. doi: 10.1016/S1872-5805(16)60030-6

Changing the chirality of single-wall carbon nanotubes during epitaxial growth: A density functional theory study

doi: 10.1016/S1872-5805(16)60030-6
Funds:  National Natural Science Foundation of China (51272257, 51202255, 51472249).
  • Received Date: 2016-07-29
  • Accepted Date: 2016-10-28
  • Rev Recd Date: 2016-10-03
  • Publish Date: 2016-10-28
  • The energetic of the change in the chirality of single-wall carbon nanotubes (SWCNTs)during epitaxial growth from (n, m) to (n±Δ, m Δ)(Δ=1, 2) was investigated by density functional theory calculations. The calculated energies for changing the chirality of different SWCNTs show a nearly linear decrease with decreasing tube diameter. In the case of Δ=1, more energy input is needed for near armchair (nAC) SWCNTs to change their chiralities than those for near zigzag (nZZ) SWCNTs with comparable diameters, due to the larger formation energies of pentagon-heptagon defects (5,7-defects) introduced in the nAC-SWCNTs. These larger formation energies for the nAC-SWCNTs come from the larger angles between the orientation of a 5,7-defect and the tube axis than those for nZZ-SWCNTs. The topological connection oftwo adjacent 5,7-defects, which is indispensable for changing the chirality during growth in the case of Δ=2, is found to be energetically most stable. The energies needed to change chirality in the case of Δ=2 are calculated to be less than twice those in the case of Δ=1 for SWCNTs with comparable diameters. These results may help us understand the change in chirality during the epitaxial growth of SWCNTs and guide the future synthesis of SWCNTs with a single-chirality.
  • loading
  • Jorio A, Dresselhaus G, Dresselhaus M S. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications[M]. Springer, Berlin, New York, 2001.
    Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules[J]. Appl Phys Lett, 1992, 60(18): 2204-2206.
    Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube[J]. Nature, 1998, 393(6680): 49-52.
    Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer[J]. Nature, 2013, 501(7468): 526-530.
    Wu Z C, Chen Z H, Du X, et al. Transparent, conductive carbon nanotube films[J]. Science, 2004, 305(5688): 1273-1276.
    Deheer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source[J]. Science, 1995, 270(5239): 1179-1180.
    Kreupl F, Graham A P, Duesberg G S, et al. Carbon nanotubes in interconnect applications[J]. Microelectron Eng, 2002, 64(1-4): 399-408.
    Cambre S, Wenseleers W, Goovaerts E, et al. Determination of the metallic/semiconducting ratio in bulk single-wall carbon nanotube samples by cobalt porphyrin probe electron paramagnetic resonance spectroscopy[J]. ACS Nano, 2010, 4(11): 6717-6724.
    Kato K, SaitoS, Geometries. electronic structures and energetics of small-diameter single-walled carbon nanotubes[J]. Physica E, 2011, 43(3): 669-672.
    Wang H, Yuan Y, Wei L, et al. Catalysts for chirality selective synthesis of single-walled carbon nanotubes[J]. Carbon, 2015, 81: 1-19.
    Loebick C Z, Podila R, Reppert J, et al. Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes[J]. J Am Chem Soc, 2010, 132(32): 11125-11131.
    Li X L, Tu X M, Zaric S, et al. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection[J]. J Am Chem Soc, 2007, 129(51): 15770-15771.
    He M S, Jiang H, Liu B L, et al. Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles[J]. Sci Rep, 2013, 3: 1460(1)-1460(7).
    Wang H, Wei L, Ren F, et al. Chiral-selective CoSO4/SiO2 Catalyst for (9,8) single-walled carbon nanotube growth[J]. Acs Nano, 2013, 7(1): 614-626.
    Dutta D, Chiang W H, Sankaran R M, et al. Epitaxial nucleation model for chiral-selective growth of single-walled carbon nanotubes on bimetallic catalyst surfaces[J]. Carbon, 2012, 50(10): 3766-3773.
    Fouquet M, Bayer B C, Esconjauregui S, et al. Highly chiral-selective growth of single-walled carbon nanotubes with a simple monometallic Co catalyst[J]. Phys Rev B, 2012, 85: 235411(1)-235411(7).
    Liu B L, Ren W C, Li S S, et al. High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst[J]. Chem Commu, 2012, 48(18): 2409-2411.
    He M, Chernov A I, Fedotov P V, et al. Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst[J]. J Am Chem Soc, 2010, 132(40): 13994-13996.
    Wei L, Wang B, Goh T H, et al. Selective enrichment of (6,5) and (8,3) single-walled carbon nanotubes via cosurfactant extraction from narrow (n,m) distribution samples[J]. J Phys Chem B, 2008, 112(10): 2771-2774.
    Wang H, Wang B, Quek X Y, et al. Selective synthesis of (9, 8) single-walled carbon nanotubes on cobalt incorporated TUD-1 catalysts[J]. J Am Chem Soc, 2010, 132(47): 16747-16749.
    Chiang W H, SankaranR M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles[J]. Nat Mater, 2009, 8(11): 882-886.
    Yang F, Wang X, Zhang D Q, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510(7506): 522-524.
    Sanchez-Valencia J R, Dienel T, Groning O, et al. Controlled synthesis of single-chirality carbon nanotubes[J]. Nature, 2014, 512(7512): 61-64.
    Lei Z X, Liu J, Wang J B, et al. The effects of catalyst structure and morphology on the growth of carbon nanotubes[J]. New Carbon Materials, 2003, 18(4): 271-276.
    Song J L, Wang L, Feng S A, et al. Growth of carbon nanotubes by the catalytic decomposition of methane over Fe-Mo/Al2O3 catalyst: Effect of temperature on tube structure[J]. New Carbon Materials, 2009, 24(4): 307-313.
    Yao Y G, Feng C Q, Zhang J, et al. "Cloning" of single-walled carbon nanotubes via open-end growth mechanism[J]. Nano Lett, 2009, 9(4): 1673-1677.
    Liu J, Wang C, Tu X M, et al. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy[J]. Nat Commun, 2012, 3: 1199(1)-1199(7).
    Yao Y G, Li Q W, Zhang J, et al. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions[J]. Nat Mater, 2007, 6(4): 283-286.
    Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186.
    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.
    Blochl P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953-17979.
    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758-1775.
    Saito R, Dresselhaus G, Dresselhaus M S. Physical Properties of Carbon Nanotubes [M]. Imperial College Press, London, 1996.
    Chico L, Crespi V H, Benedict L X, et al. Pure carbon nanoscale devices: Nanotube heterojunctions[J]. Phys Rev Lett, 1996, 76(6): 971-974.
    Ouyang M, Huang J L, Cheung C L, et al. Atomically resolved single-walled carbon nanotube intramolecular junctions[J]. Science, 2001, 291(5501): 97-100.
    Wei D C, LiuY Q. The intramolecular junctions of carbon nanotubes[J]. Adv Mater, 2008, 20(15): 2815-2841.
    Yazyev O V, LouieS G. Topological defects in graphene: Dislocations and grain boundaries[J]. Phys Rev B, 2010, 81: 195420(1)-195420(7).
    Grantab R, Shenoy V B, Ruoff R S. Anomalous strength characteristics of tilt grain boundaries in graphene[J]. Science, 2010, 330(6006): 946-948.
    Huang P Y, Ruiz-Vargas C S, van der Zande A M, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts[J]. Nature, 2011, 469(7330): 389-392.
    Zhou L G, Shi S Q. Formation energy of stone-wales defects in carbon nanotubes[J]. Appl Phys Lett, 2003, 83(6): 1222-1224.
    Yuan Q H, Xu Z P, Yakobson B I, et al. Efficient defect healing in catalytic carbon nanotube growth[J]. Phys Rev Lett, 2012, 108: 245505(1)-245505(5).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(471) PDF Downloads(523) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return