Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
ZHANG Ya-fang, YU Chang, TAN Xin-yi, CUI Song, LI Wen-bin, QIU Jie-shan. Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO[J]. NEW CARBOM MATERIALS, 2021, 36(1): 19-33. doi: 10.1016/S1872-5805(21)60002-1
Citation: ZHANG Ya-fang, YU Chang, TAN Xin-yi, CUI Song, LI Wen-bin, QIU Jie-shan. Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO[J]. NEW CARBOM MATERIALS, 2021, 36(1): 19-33. doi: 10.1016/S1872-5805(21)60002-1

Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO

doi: 10.1016/S1872-5805(21)60002-1
Funds:  The authors would like to offer special thanks to the Fundamental Research Funds for the Central Universities (DUT19LAB20); the Talent Program of Rejuvenation of the Liaoning (XLYC1807002); and the National Natural Science Foundation of China (51872035)
More Information
  • Author Bio:

    ZHANG Ya-fang. E-mail: dutzhangyafang@163.com

  • Corresponding author: YU Chang, Ph.D, Professor. E-mail: chang.yu@dlut.edu.cn; QIU Jie-shan, Ph.D, Professor. E-mail: jqiu@dlut.edu.cn
  • Received Date: 2020-12-24
  • Rev Recd Date: 2020-12-31
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • As an emerging CO2 conversion technology, the electrochemical CO2 reduction (ECR) reaction has received widespread attention. For the ECR process, the accurate and rational design of electrocatalysts is essential and significant for improving the catalytic performance. Carbon-based materials are considered one of the promising electrocatalysts for ECR because of their variety of abundant sources, high specific surface area, high porosity, and multilevel dimensionality and tunable active sites. Furthermore, doping by heteroatoms and introducing metal atoms in the frameworks or substrates of the carbon materials are effective strategies for further improving the ECR activity. Particularly, nickel-nitrogen-carbon (Ni-N-C) materials show excellent reactivities for the ECR to CO and have the potential for large-scale applications. We summarize the recent development of Ni-N-C catalysts with a multilevel structure for the ECR to CO and also the key principles and primary parameters of the ECR. Furthermore, the rational and precise design of multilevel Ni-N-C catalysts on different carbon frameworks or substrates is discussed and presented, especially including carbon quantum dots, one dimensional (1D) carbon-based materials, two dimensional (2D) carbon-based materials and nanoporous carbon-based materials. The effects of microstructure on ECR performance are also analyzed. Finally, the challenges and outlook for Ni-N-C catalysts in an ECR system are presented. This review provides some new insights and guidelines for rationally designing and preparing Ni-N-C catalysts with a multilevel structure and high performance.
  • loading
  • [1]
    Senftle T P, Carter E A. The holy grail: Chemistry enabling an economically viable CO2 capture, utilization, and storage strategy[J]. Accounts of Chemical Research,2017,50(3):472-475. doi: 10.1021/acs.accounts.6b00479
    Duan X, Xu J, Wei Z, et al. Metal-free carbon materials for CO2 electrochemical reduction[J]. Advanced Materials,2017,29(41):1701784. doi: 10.1002/adma.201701784
    Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials,2016,28(18):3423-52. doi: 10.1002/adma.201504766
    Agarwal A S, Zhai Y, Hill D, et al. The electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and economic feasibility[J]. ChemSusChem,2011,4(9):1301-1310. doi: 10.1002/cssc.201100220
    Nie X, Esopi M R, Janik M J, et al. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps[J]. Angewandte Chemie - International Edition,2013,52(9):2459-2462. doi: 10.1002/anie.201208320
    Ye K, Zhou Z, Shao J, et al. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction[J]. Angewandte Chemie - International Edition,2020,59(12):4814-4821. doi: 10.1002/anie.201916538
    Nielsen D U, Hu X, Daasbjerg K, et al. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals[J]. Nature Catalysis,2018,1(4):244-254. doi: 10.1038/s41929-018-0051-3
    Ilieva L, Ivanov I, Petrova P, et al. Effect of Y-doping on the catalytic properties of CuO/CeO2 catalysts for water-gas shift reaction[J]. International Journal of Hydrogen Energy,2020,45(49):26286-26299. doi: 10.1016/j.ijhydene.2019.10.190
    Zhu W, Michalsky R, Metin O, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. Journal of the American Chemical Society,2013,135(45):16833-16836. doi: 10.1021/ja409445p
    Kim C, Jeon H S, Eom T, et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles[J]. Journal of the American Chemical Society,2015,137(43):13844-13850. doi: 10.1021/jacs.5b06568
    Wang X, Zhao Q, Yang B, et al. Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO[J]. Journal of Materials Chemistry A,2019,7(44):25191-25202. doi: 10.1039/C9TA09681G
    Ju W, Bagger A, Hao G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications,2017,8(1):944. doi: 10.1038/s41467-017-01035-z
    Jin S, Wu M, Gordon R G, et al. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer[J]. Energy & Environmental Science,2020,13:3706-3722.
    Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews,2019,119(12):7610-7672. doi: 10.1021/acs.chemrev.8b00705
    Kortlever R, Shen J, Schouten K J P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. Journal of Physical Chemistry Letters,2015,6(20):4073-4082. doi: 10.1021/acs.jpclett.5b01559
    Li M, Wang H, Luo W, et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction[J]. Advanced Materials,2020,32(34):e2001848. doi: 10.1002/adma.202001848
    Liu H, Zhu Y, Ma J, et al. Recent advances in atomic‐level engineering of nanostructured catalysts for electrochemical CO2 reduction[J]. Advanced Functional Materials,2020,30(17):1910534. doi: 10.1002/adfm.201910534
    Li D, Batchelor-McAuley C, Compton R G. Some thoughts about reporting the electrocatalytic performance of nanomaterials[J]. Applied Materials Today,2020,18:100404. doi: 10.1016/j.apmt.2019.05.011
    Voiry D, Chhowalla M, Gogotsi Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials[J]. ACS Nano,2018,12(10):9635-9638. doi: 10.1021/acsnano.8b07700
    Tan X, Yu C, Ren Y, et al. Recent advance in innovative strategies for CO2 electroreduction reaction[J]. Energy & Environmental Science, 2021, doi: 10.1039/D0EE02981E.
    Chen Y, Ji S, Chen C, et al. Single-atom catalysts: Synthetic strategies and electrochemical applications[J]. Joule,2018,2(7):1242-1264. doi: 10.1016/j.joule.2018.06.019
    Wang Y, Yang P, Zheng L, et al. Carbon nanomaterials with sp or/and sp hybridization in energy conversion and storage applications: A review[J]. Energy Storage Materials,2020,26:349-370. doi: 10.1016/j.ensm.2019.11.006
    Ye R, Xiang C, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communications,2013,4:2943. doi: 10.1038/ncomms3943
    Qin L, Liu W, Liu X, et al. A review of nano-carbon based molecularly imprinted polymer adsorbents and their adsorption mechanism[J]. New Carbon Materials,2020,35(5):459-485. doi: 10.1016/S1872-5805(20)60503-0
    Demchenko A P, Dekaliuk M O. Novel fluorescent carbonic nanomaterials for sensing and imaging[J]. Methods and Applications in Fluorescence,2013,1(4):042001. doi: 10.1088/2050-6120/1/4/042001
    Liu Y, Li X, Zhang Q, et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots[J]. Angewandte Chemie - International Edition,2020,59(4):1718-1726. doi: 10.1002/anie.201913910
    Jin S, Ni Y, Hao Z, et al. A universal graphene quantum dot-tethering design strategy to synthesize single-atom catalysts[J]. Angewandte Chemie - International Edition,2020,59(49):21885-21889. doi: 10.1002/anie.202008422
    Zhao S, Tang Z, Guo S, et al. Enhanced activity for CO2 electroreduction on a highly active and stable ternary Au-CDots-C3N4 electrocatalyst[J]. ACS Catalysis,2018,8(1):188-197. doi: 10.1021/acscatal.7b01551
    Guo S, Zhao S, Wu X, et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas[J]. Nature Communications,2017,8(1):042001.
    Gao J, Zhao S, Guo S, et al. Carbon quantum dot-covered porous Ag with enhanced activity for selective electroreduction of CO2 to CO[J]. Inorganic Chemistry Frontiers,2019,6(6):1453-1460. doi: 10.1039/C9QI00217K
    Zhang W, Liu Y, Wu G. Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation[J]. New Carbon Materials,2020,35(2):155-164. doi: 10.1016/S1872-5805(20)60481-4
    Cheng Y, Zhao S, Johannessen B, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction[J]. Advanced Materials,2018,30(13):1706287. doi: 10.1002/adma.201706287
    Zhao C, Wang Y, Li Z, et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction[J]. Joule,2019,3(2):584-594. doi: 10.1016/j.joule.2018.11.008
    Pan F, Li B, Sarnello E, et al. Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction[J]. ACS Nano,2020,14(5):5506-5516. doi: 10.1021/acsnano.9b09658
    Ma D, Han S, Cao C, et al. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine[J]. Applied Catalysis B: Environmental,2020:264.
    Ma T, Fan Q, Li X, et al. Graphene-based materials for electrochemical CO2 reduction[J]. Journal of CO2 Utilization,2019,30:168-182. doi: 10.1016/j.jcou.2019.02.001
    Fan L, Yao W. Effects of vacancy defects on the mechanical properties of graphene/hexagonal BN superlattice nanoribbons[J]. New Carbon Materials,2020,35(2):165-175. doi: 10.1016/S1872-5805(20)60482-6
    Navalon S, Dhakshinamoorthy A, Alvaro M, et al. Carbocatalysis by graphene-based materials[J]. Chemical Reviews,2014,114(12):6179-212. doi: 10.1021/cr4007347
    Sun L. Structure and synthesis of graphene oxide[J]. Chinese Journal of Chemical Engineering,2019,27(10):2251-2260. doi: 10.1016/j.cjche.2019.05.003
    Su P, Iwase K, Nakanishi S, et al. Nickel-nitrogen-modified graphene: An efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide[J]. Small,2016,12(44):6083-6089. doi: 10.1002/smll.201602158
    Jiang K, Siahrostami S, Zheng T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science,2018,11(4):893-903.
    Yang H, Hung S, Liu S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction[J]. Nature Energy,2018,3(2):140-147. doi: 10.1038/s41560-017-0078-8
    Matsubara K, Fukahori Y, Inatomi T, et al. Monomeric three-coordinate N-heterocyclic carbene nickel(I) complexes: Synthesis, structures, and catalytic applications in cross-coupling reactions[J]. Organometallics,2016,35(19):3281-3287. doi: 10.1021/acs.organomet.6b00419
    Bi W, Li X, You R, et al. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction[J]. Advanced Materials,2018,30(18):1706617. doi: 10.1002/adma.201706617
    Zhu C, Han T Y J, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications,2015,6(1):6962. doi: 10.1038/ncomms7962
    Ito Y, Tanabe Y, Qiu H J, et al. High-quality three-dimensional nanoporous graphene[J]. Angewandte Chemie - International Edition,2014,53(19):4822-4826. doi: 10.1002/anie.201402662
    Tang C, Zhang Q, Zhao M Q, et al. Resilient aligned carbon nanotube/graphene sandwiches for robust mechanical energy storage[J]. Nano Energy,2014,7:161-169. doi: 10.1016/j.nanoen.2014.05.005
    Wang Y, Tao L, Xiao Z, et al. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks[J]. Advanced Functional Materials,2018,28(11):1705356. doi: 10.1002/adfm.201705356
    Jorge A B, Jervis R, Periasamy A P, et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis[J]. Advanced Energy Materials,2020,10:1902494.
    Cheng Y, Zhao S, Li H, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2[J]. Applied Catalysis B: Environmental,2019,243:294-303. doi: 10.1016/j.apcatb.2018.10.046
    Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444. doi: 10.1126/science.1230444
    Albo J, Vallejo D, Beobide G, et al. Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols[J]. ChemSusChem,2017,10(6):1100-1109. doi: 10.1002/cssc.201600693
    Duan X, Pan N, Sun C, et al. MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn–air batteries and water-splitting[J]. Journal of Energy Chemistry,2020,56:290-298.
    Tan X, Yu C, Zhao C, et al. Restructuring of Cu2O to Cu2O@Cu-Metal–Organic Frameworks for Selective Electrochemical Reduction of CO2[J]. ACS Applied Materials & Interfaces,2019,11(10):9904-9910.
    Gascon J, Corma A, Kapteijn F, et al. Metal organic framework catalysis: quo vadis?[J]. ACS Catalysis,2013,4(2):361-378.
    Zhao C, Dai X, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. Journal of the American Chemical Society,2017,139(24):8078-8081. doi: 10.1021/jacs.7b02736
    Yan C, Li H, Ye Y, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science,2018,11(5):1204-1210.
    Yang J, Qiu Z, Zhao C, et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts[J]. Angewandte Chemie - International Edition,2018,57(43):14095-14100. doi: 10.1002/anie.201808049
    Cui S, Yu C, Tan X, et al. Achieving multiple and tunable ratios of syngas to meet various downstream industrial processes[J]. ACS Sustainable Chemistry & Engineering,2020,8(8):3328-3335.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (94) PDF downloads(30) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint