Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
ZHANG Ya-fang, YU Chang, TAN Xin-yi, CUI Song, LI Wen-bin, QIU Jie-shan. Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO. New Carbon Mater., 2021, 36(1): 19-33. doi: 10.1016/S1872-5805(21)60002-1
Citation: ZHANG Ya-fang, YU Chang, TAN Xin-yi, CUI Song, LI Wen-bin, QIU Jie-shan. Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO. New Carbon Mater., 2021, 36(1): 19-33. doi: 10.1016/S1872-5805(21)60002-1

Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO

doi: 10.1016/S1872-5805(21)60002-1
Funds:  The authors would like to offer special thanks to the Fundamental Research Funds for the Central Universities (DUT19LAB20); the Talent Program of Rejuvenation of the Liaoning (XLYC1807002); and the National Natural Science Foundation of China (51872035)
More Information
  • As an emerging CO2 conversion technology, the electrochemical CO2 reduction (ECR) reaction has received widespread attention. For the ECR process, the accurate and rational design of electrocatalysts is essential and significant for improving the catalytic performance. Carbon-based materials are considered one of the promising electrocatalysts for ECR because of their variety of abundant sources, high specific surface area, high porosity, and multilevel dimensionality and tunable active sites. Furthermore, doping by heteroatoms and introducing metal atoms in the frameworks or substrates of the carbon materials are effective strategies for further improving the ECR activity. Particularly, nickel-nitrogen-carbon (Ni-N-C) materials show excellent reactivities for the ECR to CO and have the potential for large-scale applications. We summarize the recent development of Ni-N-C catalysts with a multilevel structure for the ECR to CO and also the key principles and primary parameters of the ECR. Furthermore, the rational and precise design of multilevel Ni-N-C catalysts on different carbon frameworks or substrates is discussed and presented, especially including carbon quantum dots, one dimensional (1D) carbon-based materials, two dimensional (2D) carbon-based materials and nanoporous carbon-based materials. The effects of microstructure on ECR performance are also analyzed. Finally, the challenges and outlook for Ni-N-C catalysts in an ECR system are presented. This review provides some new insights and guidelines for rationally designing and preparing Ni-N-C catalysts with a multilevel structure and high performance.
  • loading
  • [1]
    Senftle T P, Carter E A. The holy grail: Chemistry enabling an economically viable CO2 capture, utilization, and storage strategy[J]. Accounts of Chemical Research,2017,50(3):472-475. doi: 10.1021/acs.accounts.6b00479
    [2]
    Duan X, Xu J, Wei Z, et al. Metal-free carbon materials for CO2 electrochemical reduction[J]. Advanced Materials,2017,29(41):1701784. doi: 10.1002/adma.201701784
    [3]
    Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials,2016,28(18):3423-52. doi: 10.1002/adma.201504766
    [4]
    Agarwal A S, Zhai Y, Hill D, et al. The electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and economic feasibility[J]. ChemSusChem,2011,4(9):1301-1310. doi: 10.1002/cssc.201100220
    [5]
    Nie X, Esopi M R, Janik M J, et al. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps[J]. Angewandte Chemie - International Edition,2013,52(9):2459-2462. doi: 10.1002/anie.201208320
    [6]
    Ye K, Zhou Z, Shao J, et al. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction[J]. Angewandte Chemie - International Edition,2020,59(12):4814-4821. doi: 10.1002/anie.201916538
    [7]
    Nielsen D U, Hu X, Daasbjerg K, et al. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals[J]. Nature Catalysis,2018,1(4):244-254. doi: 10.1038/s41929-018-0051-3
    [8]
    Ilieva L, Ivanov I, Petrova P, et al. Effect of Y-doping on the catalytic properties of CuO/CeO2 catalysts for water-gas shift reaction[J]. International Journal of Hydrogen Energy,2020,45(49):26286-26299. doi: 10.1016/j.ijhydene.2019.10.190
    [9]
    Zhu W, Michalsky R, Metin O, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. Journal of the American Chemical Society,2013,135(45):16833-16836. doi: 10.1021/ja409445p
    [10]
    Kim C, Jeon H S, Eom T, et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles[J]. Journal of the American Chemical Society,2015,137(43):13844-13850. doi: 10.1021/jacs.5b06568
    [11]
    Wang X, Zhao Q, Yang B, et al. Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO[J]. Journal of Materials Chemistry A,2019,7(44):25191-25202. doi: 10.1039/C9TA09681G
    [12]
    Ju W, Bagger A, Hao G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications,2017,8(1):944. doi: 10.1038/s41467-017-01035-z
    [13]
    Jin S, Wu M, Gordon R G, et al. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer[J]. Energy & Environmental Science,2020,13:3706-3722.
    [14]
    Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews,2019,119(12):7610-7672. doi: 10.1021/acs.chemrev.8b00705
    [15]
    Kortlever R, Shen J, Schouten K J P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. Journal of Physical Chemistry Letters,2015,6(20):4073-4082. doi: 10.1021/acs.jpclett.5b01559
    [16]
    Li M, Wang H, Luo W, et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction[J]. Advanced Materials,2020,32(34):e2001848. doi: 10.1002/adma.202001848
    [17]
    Liu H, Zhu Y, Ma J, et al. Recent advances in atomic‐level engineering of nanostructured catalysts for electrochemical CO2 reduction[J]. Advanced Functional Materials,2020,30(17):1910534. doi: 10.1002/adfm.201910534
    [18]
    Li D, Batchelor-McAuley C, Compton R G. Some thoughts about reporting the electrocatalytic performance of nanomaterials[J]. Applied Materials Today,2020,18:100404. doi: 10.1016/j.apmt.2019.05.011
    [19]
    Voiry D, Chhowalla M, Gogotsi Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials[J]. ACS Nano,2018,12(10):9635-9638. doi: 10.1021/acsnano.8b07700
    [20]
    Tan X, Yu C, Ren Y, et al. Recent advance in innovative strategies for CO2 electroreduction reaction[J]. Energy & Environmental Science, 2021, doi: 10.1039/D0EE02981E.
    [21]
    Chen Y, Ji S, Chen C, et al. Single-atom catalysts: Synthetic strategies and electrochemical applications[J]. Joule,2018,2(7):1242-1264. doi: 10.1016/j.joule.2018.06.019
    [22]
    Wang Y, Yang P, Zheng L, et al. Carbon nanomaterials with sp or/and sp hybridization in energy conversion and storage applications: A review[J]. Energy Storage Materials,2020,26:349-370. doi: 10.1016/j.ensm.2019.11.006
    [23]
    Ye R, Xiang C, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communications,2013,4:2943. doi: 10.1038/ncomms3943
    [24]
    Qin L, Liu W, Liu X, et al. A review of nano-carbon based molecularly imprinted polymer adsorbents and their adsorption mechanism[J]. New Carbon Materials,2020,35(5):459-485. doi: 10.1016/S1872-5805(20)60503-0
    [25]
    Demchenko A P, Dekaliuk M O. Novel fluorescent carbonic nanomaterials for sensing and imaging[J]. Methods and Applications in Fluorescence,2013,1(4):042001. doi: 10.1088/2050-6120/1/4/042001
    [26]
    Liu Y, Li X, Zhang Q, et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots[J]. Angewandte Chemie - International Edition,2020,59(4):1718-1726. doi: 10.1002/anie.201913910
    [27]
    Jin S, Ni Y, Hao Z, et al. A universal graphene quantum dot-tethering design strategy to synthesize single-atom catalysts[J]. Angewandte Chemie - International Edition,2020,59(49):21885-21889. doi: 10.1002/anie.202008422
    [28]
    Zhao S, Tang Z, Guo S, et al. Enhanced activity for CO2 electroreduction on a highly active and stable ternary Au-CDots-C3N4 electrocatalyst[J]. ACS Catalysis,2018,8(1):188-197. doi: 10.1021/acscatal.7b01551
    [29]
    Guo S, Zhao S, Wu X, et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas[J]. Nature Communications,2017,8(1):042001.
    [30]
    Gao J, Zhao S, Guo S, et al. Carbon quantum dot-covered porous Ag with enhanced activity for selective electroreduction of CO2 to CO[J]. Inorganic Chemistry Frontiers,2019,6(6):1453-1460. doi: 10.1039/C9QI00217K
    [31]
    Zhang W, Liu Y, Wu G. Surface modification of multiwall carbon nanotubes by electrochemical anodic oxidation[J]. New Carbon Materials,2020,35(2):155-164. doi: 10.1016/S1872-5805(20)60481-4
    [32]
    Cheng Y, Zhao S, Johannessen B, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction[J]. Advanced Materials,2018,30(13):1706287. doi: 10.1002/adma.201706287
    [33]
    Zhao C, Wang Y, Li Z, et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction[J]. Joule,2019,3(2):584-594. doi: 10.1016/j.joule.2018.11.008
    [34]
    Pan F, Li B, Sarnello E, et al. Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction[J]. ACS Nano,2020,14(5):5506-5516. doi: 10.1021/acsnano.9b09658
    [35]
    Ma D, Han S, Cao C, et al. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine[J]. Applied Catalysis B: Environmental,2020:264.
    [36]
    Ma T, Fan Q, Li X, et al. Graphene-based materials for electrochemical CO2 reduction[J]. Journal of CO2 Utilization,2019,30:168-182. doi: 10.1016/j.jcou.2019.02.001
    [37]
    Fan L, Yao W. Effects of vacancy defects on the mechanical properties of graphene/hexagonal BN superlattice nanoribbons[J]. New Carbon Materials,2020,35(2):165-175. doi: 10.1016/S1872-5805(20)60482-6
    [38]
    Navalon S, Dhakshinamoorthy A, Alvaro M, et al. Carbocatalysis by graphene-based materials[J]. Chemical Reviews,2014,114(12):6179-212. doi: 10.1021/cr4007347
    [39]
    Sun L. Structure and synthesis of graphene oxide[J]. Chinese Journal of Chemical Engineering,2019,27(10):2251-2260. doi: 10.1016/j.cjche.2019.05.003
    [40]
    Su P, Iwase K, Nakanishi S, et al. Nickel-nitrogen-modified graphene: An efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide[J]. Small,2016,12(44):6083-6089. doi: 10.1002/smll.201602158
    [41]
    Jiang K, Siahrostami S, Zheng T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science,2018,11(4):893-903.
    [42]
    Yang H, Hung S, Liu S, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction[J]. Nature Energy,2018,3(2):140-147. doi: 10.1038/s41560-017-0078-8
    [43]
    Matsubara K, Fukahori Y, Inatomi T, et al. Monomeric three-coordinate N-heterocyclic carbene nickel(I) complexes: Synthesis, structures, and catalytic applications in cross-coupling reactions[J]. Organometallics,2016,35(19):3281-3287. doi: 10.1021/acs.organomet.6b00419
    [44]
    Bi W, Li X, You R, et al. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction[J]. Advanced Materials,2018,30(18):1706617. doi: 10.1002/adma.201706617
    [45]
    Zhu C, Han T Y J, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications,2015,6(1):6962. doi: 10.1038/ncomms7962
    [46]
    Ito Y, Tanabe Y, Qiu H J, et al. High-quality three-dimensional nanoporous graphene[J]. Angewandte Chemie - International Edition,2014,53(19):4822-4826. doi: 10.1002/anie.201402662
    [47]
    Tang C, Zhang Q, Zhao M Q, et al. Resilient aligned carbon nanotube/graphene sandwiches for robust mechanical energy storage[J]. Nano Energy,2014,7:161-169. doi: 10.1016/j.nanoen.2014.05.005
    [48]
    Wang Y, Tao L, Xiao Z, et al. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks[J]. Advanced Functional Materials,2018,28(11):1705356. doi: 10.1002/adfm.201705356
    [49]
    Jorge A B, Jervis R, Periasamy A P, et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis[J]. Advanced Energy Materials,2020,10:1902494.
    [50]
    Cheng Y, Zhao S, Li H, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2[J]. Applied Catalysis B: Environmental,2019,243:294-303. doi: 10.1016/j.apcatb.2018.10.046
    [51]
    Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444. doi: 10.1126/science.1230444
    [52]
    Albo J, Vallejo D, Beobide G, et al. Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols[J]. ChemSusChem,2017,10(6):1100-1109. doi: 10.1002/cssc.201600693
    [53]
    Duan X, Pan N, Sun C, et al. MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn–air batteries and water-splitting[J]. Journal of Energy Chemistry,2020,56:290-298.
    [54]
    Tan X, Yu C, Zhao C, et al. Restructuring of Cu2O to Cu2O@Cu-Metal–Organic Frameworks for Selective Electrochemical Reduction of CO2[J]. ACS Applied Materials & Interfaces,2019,11(10):9904-9910.
    [55]
    Gascon J, Corma A, Kapteijn F, et al. Metal organic framework catalysis: quo vadis?[J]. ACS Catalysis,2013,4(2):361-378.
    [56]
    Zhao C, Dai X, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. Journal of the American Chemical Society,2017,139(24):8078-8081. doi: 10.1021/jacs.7b02736
    [57]
    Yan C, Li H, Ye Y, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science,2018,11(5):1204-1210.
    [58]
    Yang J, Qiu Z, Zhao C, et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts[J]. Angewandte Chemie - International Edition,2018,57(43):14095-14100. doi: 10.1002/anie.201808049
    [59]
    Cui S, Yu C, Tan X, et al. Achieving multiple and tunable ratios of syngas to meet various downstream industrial processes[J]. ACS Sustainable Chemistry & Engineering,2020,8(8):3328-3335.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article Views(981) PDF Downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return