Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
LUO Xian-you, CHEN Yong, MO Yan. A review of charge storage in porous carbon-based supercapacitors[J]. NEW CARBOM MATERIALS, 2021, 36(1): 49-68. doi: 10.1016/S1872-5805(21)60004-5
Citation: LUO Xian-you, CHEN Yong, MO Yan. A review of charge storage in porous carbon-based supercapacitors[J]. NEW CARBOM MATERIALS, 2021, 36(1): 49-68. doi: 10.1016/S1872-5805(21)60004-5

A review of charge storage in porous carbon-based supercapacitors

doi: 10.1016/S1872-5805(21)60004-5
Funds:  This work was supported by the National Natural Science Foundation of China (52062012), Key Science & Technology Project of Hainan Province (ZDYF2020028)
More Information
  • Author Bio:

    LUO Xian-you, Ph. D candidate. E-mail: luoxianyou1990@163.com

  • Corresponding author: CHEN Yong, Ph. D, Professor. E-mail: ychen2002@163.com; MO Yan, Ph. D, E-mail: myfriends66@163.com
  • Received Date: 2020-12-24
  • Rev Recd Date: 2020-12-28
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Porous carbon-based electrode materials have been widely used in supercapacitors (SCs) because of their good physicochemical stability, high specific surface area, adjustable pore structure, and excellent electrical conductivity. The factors influencing their SC performance are analyzed, which include specific surface area, pore structure, surface heteroatoms, structural defects and electrode structure. The high surface area accessible to ions provides abundant active sites for their storage, while a suitable pore structure is important for the accommodation and diffusion of ions, thereby influencing the specific capacitance and rate performance of the electrodes. An appropriate pore size with a narrow distribution is required to increase the volumetric energy density while mesopores are favorable for ion transport, so a good balance between micro and mesopore volumes is important to improve both the energy and power densities of the SCs. Structural defects, surface heteroatoms and a rational electrode structural design all play significant roles in the capacitance performance.
  • loading
  • [1]
    Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials,2010,22(8):E28-E62. doi: 10.1002/adma.200903328
    Muzaffar A, Ahamed M B, Deshmukh K, et al. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications[J]. Renewable & Sustainable Energy Reviews,2019,101:123-145.
    Simon P, Gogotsi Y, Dunn B. Materials science. Where do batteries end and supercapacitors begin?[J]. Science,2014,343(6176):1210-1211. doi: 10.1126/science.1249625
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. doi: 10.1038/nmat2297
    Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy,2016,1(6):16070. doi: 10.1038/nenergy.2016.70
    Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    González A, Goikolea E, Barrena J A, et al. Review on supercapacitors: Technologies and materials[J]. Renewable and Sustainable Energy Reviews,2016,58:1189-1206. doi: 10.1016/j.rser.2015.12.249
    Chen Y, Hao X, Chen G Z. Nanoporous versus nanoparticulate carbon-based materials for capacitive charge storage[J]. Energy & Environmental Materials,2020,3(3):247-264.
    Shao H, Wu Y C, Lin Z, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews,2020,49(10):3005-3039. doi: 10.1039/D0CS00059K
    Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science,2006,313(5794):1760-1763. doi: 10.1126/science.1132195
    Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society,2008,130(9):2730-2731. doi: 10.1021/ja7106178
    Jiang L L, Sheng L Z, Fan Z J. Biomass-derived carbon materials with structural diversities and their applications in energy storage[J]. Science China-Materials,2018,61(2):133-158. doi: 10.1007/s40843-017-9169-4
    Li Z J, Peng H N, Liu R R, et al. Quantitative assessment of basal-, edge- and defect-surfaces of carbonaceous materials and their influence on electric double-layer capacitance[J]. Journal of Power Sources,2020,457:228022. doi: 10.1016/j.jpowsour.2020.228022
    Lyu L, Seong K d, Ko D, et al. Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors[J]. Materials Chemistry Frontiers,2019,3(12):2543-2570. doi: 10.1039/C9QM00348G
    Wang T, Zang X, Wang X, et al. Recent advances in fluorine-doped/fluorinated carbon-based materials for supercapacitors[J]. Energy Storage Materials,2020,30:367-384. doi: 10.1016/j.ensm.2020.04.044
    Li D H, Chang G J, Zong L, et al. From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage[J]. Energy Storage Materials,2019,17:22-30. doi: 10.1016/j.ensm.2018.08.004
    Li J M, Jiang Q M, Wei L S, et al. Simple and scalable synthesis of hierarchical porous carbon derived from cornstalk without pith for high capacitance and energy density[J]. Journal of Materials Chemistry A,2020,8(3):1469-1479. doi: 10.1039/C9TA07864A
    Li J X, Han K H, Wang D, et al. Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitor[J]. Carbon,2020,164:42-50. doi: 10.1016/j.carbon.2020.03.044
    Zhu Y Y, Chen M M, Zhang Y, et al. A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor[J]. Carbon,2018,140:404-412. doi: 10.1016/j.carbon.2018.09.009
    Helmholtz H v. Ueber einige gesetze der vertheilung elektrischer strome in korperlichen leitern mit anwendung auf die thierisch-elektrischen versuche[J]. Annalen der Physik,1853,165:211-233. doi: 10.1002/andp.18531650603
    Chapman D L. LI. A contribution to the theory of electrocapillarity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1913,25(148):475-481. doi: 10.1080/14786440408634187
    Gouy M. Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. Journal de Physique Théorique et Appliquée,1910,9(1):457-468.
    Stern O. The theory of the electrolytic double-layer[J]. Z Elektrochem,1924,30:508-516.
    Fedorov M V, Kornyshev A A. Ionic liquids at electrified interfaces[J]. Chemical Reviews,2014,114(5):2978-3036. doi: 10.1021/cr400374x
    Bazant M Z, Storey B D, Kornyshev A A. Double layer in ionic liquids: Overscreening versus crowding[J]. Physical Review Letters,2011,106(4):046102. doi: 10.1103/PhysRevLett.106.046102
    Danish M, Ahmad T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J]. Renewable and Sustainable Energy Reviews,2018,87:1-21. doi: 10.1016/j.rser.2018.02.003
    He Y F, Zhuang X D, Lei C J, et al. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications[J]. Nano Today,2019,24:103-119. doi: 10.1016/j.nantod.2018.12.004
    Shanmuga Priya M, Divya P, et al. A review status on characterization and electrochemical behaviour of biomass derived carbon materials for energy storage supercapacitors[J]. Sustainable Chemistry and Pharmacy,2020,16:100243. doi: 10.1016/j.scp.2020.100243
    Tang G X, Zhand L Q, Zhu X F, et al. The preparation of activated carbon from walnut shell bio-oil distillation residues[J]. New Carbon Materials,2019,34(5):434-440.
    Wang J S, Zhang X, Li Z, et al. Recent progress of biomass-derived carbon materials for supercapacitors[J]. Journal of Power Sources,2020,451:227794. doi: 10.1016/j.jpowsour.2020.227794
    Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-139.
    Jia C, Li Y J, Yang Z, et al. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule,2017,1(3):588-599. doi: 10.1016/j.joule.2017.09.011
    Zhu M, Li Y, Chen G, et al. Tree-inspired design for high-efficiency water extraction[J]. Advanced Materials,2017,29(44):1704107. doi: 10.1002/adma.201704107
    Xiao C Y, Zhang W L, Lin H B, et al. Modification of a rice husk-based activated carbon by thermal treatment and its effect on its electrochemical performance as a supercapacitor electrode[J]. New Carbon Materials,2019,34(4):341-348. doi: 10.1016/S1872-5805(19)30021-6
    Yang K, Peng J, Srinivasakannan C, et al. Preparation of high surface area activated carbon from coconut shells using microwave heating[J]. Bioresource Technology,2010,101(15):6163-6169. doi: 10.1016/j.biortech.2010.03.001
    Wang D H, Wang Y Z, Chen Y, et al. Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes[J]. Electrochimica Acta,2018,283:132-140. doi: 10.1016/j.electacta.2018.06.151
    Deng Y, Wei J, Sun Z, et al. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers[J]. Chemical Society Reviews,2013,42(9):4054-4070. doi: 10.1039/C2CS35426H
    Lin Z, Liu S, Mao W, et al. Tunable self-assembly of diblock copolymers into colloidal particles with triply periodic minimal surfaces[J]. Angewandte Chemie-International Edition,2017,56(25):7135-7140. doi: 10.1002/anie.201702591
    Im U S, Kim J, Lee S H, et al. Preparation of activated carbon from needle coke via two-stage steam activation process[J]. Materials Letters,2019,237:22-25. doi: 10.1016/j.matlet.2018.09.171
    Qin L Y, Hou Z W, Lu S, et al. Porous carbon derived from pine nut shell prepared by steam activation for supercapacitor electrode material[J]. International Journal of Electrochemical Science,2019,14(9):8907-8918.
    Lei E, Li W, Ma C H, et al. CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors[J]. Applied Surface Science,2018,457:477-486. doi: 10.1016/j.apsusc.2018.07.001
    Ma M J, Ying H J, Cao F F, et al. Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation[J]. Chinese Journal of Chemical Engineering,2020,28(4):1069-1076. doi: 10.1016/j.cjche.2020.01.016
    Chen W M, Luo M, Yang K, et al. Microwave-assisted KOH activation from lignin into hierarchically porous carbon with super high specific surface area by utilizing the dual roles of inorganic salts: Microwave absorber and porogen[J]. Microporous and Mesoporous Materials,2020,300:110178. doi: 10.1016/j.micromeso.2020.110178
    Zhu Z H, Liu Y J, Ju Z J, et al. Synthesis of diverse green carbon nanomaterials through fully utilizing biomass carbon source assisted by KOH[J]. ACS Applied Materials & Interfaces,2019,11(27):24205-24211.
    Hu L F, Zhu Q Z, Wu Q, et al. Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):13949-13959.
    Zhang Y, Song X L, Xu Y, et al. Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace[J]. Journal of Cleaner Production,2019,210:366-375. doi: 10.1016/j.jclepro.2018.11.041
    Chen H J, Wei H M, Fu N, et al. Nitrogen-doped porous carbon using ZnCl2 as activating agent for high-performance supercapacitor electrode materials[J]. Journal of Materials Science,2018,53(4):2669-2684. doi: 10.1007/s10853-017-1453-3
    Sun Q J, Jiang T Y, Zhao G Z, et al. Porous carbon material based on biomass prepared by MgO template method and ZnCl2 activation method as electrode for high performance supercapacitor[J]. International Journal of Electrochemical Science,2019,14(1):1-14.
    Du W M, Zhang Z R, Du L G, et al. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors[J]. Journal of Alloys and Compounds,2019,797:1031-1040. doi: 10.1016/j.jallcom.2019.05.207
    Endo M, Maeda T, Takeda T, et al. Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes[J]. Journal of the Electrochemical Society,2001,148(8):A910-A914. doi: 10.1149/1.1382589
    Long C L, Chen X, Jiang L L, et al. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors[J]. Nano Energy,2015,12:141-151. doi: 10.1016/j.nanoen.2014.12.014
    J Gamby, Taberna P L, Simon P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. Journal of Power Sources,2001,101:109-116. doi: 10.1016/S0378-7753(01)00707-8
    Linoam E, Gregory S, Abraham S, et al. Ion sieving effects in the electrical double layer of porous carbon electrodes: Estimating effective ion size in electrolytic solutions[J]. The Journal of Physical Chemistry B,2001,105:6880-6887. doi: 10.1021/jp010086y
    Gregory S, Abraham S, Linoam E, et al. Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions[J]. Journal of the Electrochemical Society,2000,147(7):2486-2493. doi: 10.1149/1.1393557
    Raymundo-Piñero E, Kierzek K, Machnikowski J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon,2006,44(12):2498-2507. doi: 10.1016/j.carbon.2006.05.022
    Li Z, Gadipelli S, Li H, et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage[J]. Nature Energy,2020,5(2):160-168. doi: 10.1038/s41560-020-0560-6
    Chmiola J, Largeot C, Taberna P L, et al. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory[J]. Angewandte Chemie-International Edition,2008,120(18):3440-3443.
    Prehal C, Koczwara C, Jäckel N, et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering[J]. Nature Energy,2017,2(3):16215. doi: 10.1038/nenergy.2016.215
    Galhena D T, Bayer B C, Hofmann S, et al. Understanding capacitance variation in sub-nanometer pores by in situ tuning of interlayer constrictions[J]. ACS Nano,2016,10(1):747-754. doi: 10.1021/acsnano.5b05819
    Tsai W Y, Taberna P L, Simon P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons[J]. Journal of the American Chemical Society,2014,136(24):8722-8728. doi: 10.1021/ja503449w
    Jäckel N, Simon P, Gogotsi Y, et al. Increase in capacitance by subnanometer pores in carbon[J]. ACS Energy Letters,2016,1(6):1262-1265. doi: 10.1021/acsenergylett.6b00516
    Kalluri R K, Konatham D, Striolo A. Aqueous NaCl solutions within charged carbon-slit pores: Partition coefficients and density distributions from molecular dynamics simulations[J]. The Journal of Physical Chemistry C,2011,115(28):13786-13795. doi: 10.1021/jp203086x
    Liu H M, Jameson C J, Murad S. Molecular dynamics simulation of ion selectivity process in nanopores[J]. Molecular Simulation,2008,34(2):169-175. doi: 10.1080/08927020801966087
    Shao Q, Huang L L, Zhou J, et al. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes[J]. Physical Chemistry Chemical Physics,2008,10(14):1896-1906. doi: 10.1039/b719033f
    Kondrat S, Kornyshev A. Corrigendum: Superionic state in double-layer capacitors with nanoporous electrodes[J]. Journal of Physics: Condensed Matter,2013,25(11):119501. doi: 10.1088/0953-8984/25/11/119501
    Futamura R, Iiyama T, Takasaki Y, et al. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores[J]. Nature Materials,2017,16(12):1225-1232. doi: 10.1038/nmat4974
    Chmiola J, Yushin G, Dash R, et al. Effect of pore size and surface area of carbide derived carbons on specific capacitance[J]. Journal of Power Sources,2006,158(1):765-772. doi: 10.1016/j.jpowsour.2005.09.008
    Kondrat S, Pérez C R, Presser V, et al. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors[J]. Energy & Environmental Science,2012,5(4):6474-6479.
    Wang D W, Li F, Liu M, et al. Mesopore-aspect-ratio dependence of ion transport in rodtype ordered mesoporous carbon[J]. The Journal of Physical Chemistry C,2008,112(26):9950-9955. doi: 10.1021/jp800173z
    Wang D W, Li F, Fang H T, et al. Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport[J]. The Journal of Physical Chemistry B,2006,110(17):8570-8575. doi: 10.1021/jp0572683
    Wang Q, Yan J, Fan Z J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities[J]. Energy & Environmental Science,2016,9(3):729-762.
    Black J M, Andreas H A. Pore shape affects spontaneous charge redistribution in small pores[J]. The Journal of Physical Chemistry C,2010,114(27):12030-12038. doi: 10.1021/jp103766q
    Noked M, Avraham E, Soffer A, et al. The rate-determining step of electroadsorption processes into nanoporous carbon electrodes related to water desalination[J]. Journal of Physical Chemistry C,2009,113(51):21319-21327. doi: 10.1021/jp905987j
    Kang X, Wang C, Yin J. Hierarchically porous carbons derived from cotton stalks for high-performance supercapacitors[J]. Chemelectrochem,2017,4(10):2599-2607. doi: 10.1002/celc.201700501
    Shang Z, An X Y, Zhang H, et al. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor[J]. Carbon,2020,161:62-70. doi: 10.1016/j.carbon.2020.01.020
    Shao R, Niu J, Liang J J, et al. Mesopore- and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes[J]. ACS Applied Materials & Interfaces,2017,9(49):42797-42805.
    Wang D W, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie-International Edition,2008,47(2):379-382.
    Xia L C, Huang H, Fan Z, et al. Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: A cost-effective biomass material for binder-free supercapacitors[J]. Materials & Design,2019,182:108048.
    Zhang Q, Han K, Li S, et al. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors[J]. Nanoscale,2018,10(5):2427-2437. doi: 10.1039/C7NR07158B
    Zhi L, Li T, Yu H, et al. Hierarchical graphene network sandwiched by a thin carbon layer for capacitive energy storage[J]. Carbon,2017,113:100-107. doi: 10.1016/j.carbon.2016.11.036
    Huang J, Sumpter B G, Meunier V, et al. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors[J]. Journal of Materials Research,2011,25(8):1525-1531.
    Huang J, Sumpter B G, Meunier V. Theoretical model for nanoporous carbon supercapacitors[J]. Angewandte Chemie-International Edtion,2008,47(3):520-524. doi: 10.1002/anie.200703864
    Huang J, Sumpter B G, Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials and electrolytes[J]. Chemistry-A European Journal,2008,14(22):6614-6626. doi: 10.1002/chem.200800639
    Feng G, Qiao R, Huang J, et al. Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance[J]. ACS Nano,2010,4(4):2382-2390. doi: 10.1021/nn100126w
    Thommes M, Cychosz K A. Physical adsorption characterization of nanoporous materials: Progress and challenges[J]. Adsorption-Journal of the International Adsorption Society,2014,20:233-250. doi: 10.1007/s10450-014-9606-z
    Sing K S W, Williams R T. The use of molecular probes for the characterization of nanoporous adsorbents[J]. Particle & Particle Systems Characterization,2004,21(2):71-79.
    Silvestre-Albero J, Silvestre-Albero A, Rodríguez-Reinoso F, et al. Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry[J]. Carbon,2012,50(9):3128-3133. doi: 10.1016/j.carbon.2011.09.005
    García-Martínez J, Cazorla-Amorós D, Linares-Solano A. Further evidences of the usefulness of CO2 microporous solids.[J]. Studies in Surface Science and Catalysis,2000,128:485-494. doi: 10.1016/S0167-2991(00)80054-3
    Furmaniak S, Terzyk A P, Gauden P A, et al. The influence of carbon surface oxygen groups on Dubinin-Astakhov equation parameters calculated from CO2 adsorption isotherm[J]. Journal of Physics-Condensed Matter,2010,22(8):085003. doi: 10.1088/0953-8984/22/8/085003
    Zhang Z, Yang Z. Theoretical and practical discussion of measurement accuracy for physisorption with micro- and mesoporous materials[J]. Chinese Journal of Catalysis,2013,34(10):1797-1810. doi: 10.1016/S1872-2067(12)60601-9
    Rouquerol J, Llewellyn P, Rouquerol F. Is the BET equation applicable to microporous adsorbents?[J]. Studies in Surface Science and Catalysis,2007,160:49-56. doi: 10.1016/S0167-2991(07)80008-5
    Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. Journal of the American Chemical Society,1951,73(1):373-380. doi: 10.1021/ja01145a126
    Dubinin M M, Polyakov N S, Kataeva L I. Basic properties of equations for physical vapor adsorption in micropores of carbon adsorbents assuming a normal micropore distribution[J]. Carbon,1991,29:481-488. doi: 10.1016/0008-6223(91)90111-U
    Dubinin M M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces[J]. Chemical Reviews,1960,60:235-241. doi: 10.1021/cr60204a006
    Horvath G, Kawazoe, K. Method for the calculation of effective pore size distribution in molecular sieve carbon[J]. Journal of Chemical Engineering of Japan,1983,16:470-475. doi: 10.1252/jcej.16.470
    Saito A, Foley H C. Curvature and parametric sensitivity in models for adsorption in micropores[J]. Aiche Journal,1991,37(3):429-436. doi: 10.1002/aic.690370312
    Thommes M, Köhn R, Fröba M. Sorption and pore condensation behavior of nitrogen, argon, and krypton in mesoporous MCM-48 silica materials[J]. The Journal of Physical Chemistry B,2000,104(33):7932-7943. doi: 10.1021/jp994133m
    Ravikovitch P I, Neimark A V. Density functional theory model of adsorption deformation[J]. Langmuir,2006,22(26):10864-10868. doi: 10.1021/la061092u
    Tarazona P, Marconi U M B, Evans R. Phase equilibria of fluid interfaces and confined fluids[J]. Molecular Physics,1987,60(3):573-595. doi: 10.1080/00268978700100381
    Gor G Y, Thommes M, Cychosz K A, et al. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption[J]. Carbon,2012,50(4):1583-1590. doi: 10.1016/j.carbon.2011.11.037
    Ravikovitch P I, Neimark A V. Density functional theory model of adsorption on amorphous and microporous silica materials[J]. Langmuir,2006,22(26):11171-11179. doi: 10.1021/la0616146
    Jagiello J, Olivier J P. 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation[J]. Carbon,2013,55:70-80. doi: 10.1016/j.carbon.2012.12.011
    Kwiatkowski M, Fierro V, Celzard A. Confrontation of various adsorption models for assessing the porous structure of activated carbons[J]. Adsorption-Journal of the International Adsorption Society,2019,25(8):1673-1682. doi: 10.1007/s10450-019-00129-y
    Lai W D, Yang S, Jiang Y H, et al. Artefact peaks of pore size distributions caused by unclosed sorption isotherm and tensile strength effect[J]. Adsorption-Journal of the International Adsorption Society,2020,26(4):633-644. doi: 10.1007/s10450-020-00228-1
    Niu J, Shao R, Liang J J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors[J]. Nano Energy,2017,36:322-330. doi: 10.1016/j.nanoen.2017.04.042
    Banks C E, Davies T J, Wildgoose G G, et al. Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites[J]. Chemical Communications,2005(7):829-841. doi: 10.1039/b413177k
    Kim T, Lim S, Kwon K, et al. Electrochemical capacitances of well-defined carbon surfaces[J]. Langmuir,2006,22(22):9086-9088. doi: 10.1021/la061380q
    Qu D. Studies of the activated carbons used in double-layer supercapacitors[J]. Journal of Power Sources,2002,109(2):403-411. doi: 10.1016/S0378-7753(02)00108-8
    Yuan W, Zhou Y, Li Y, et al. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet[J]. Scientific Reports,2013,3:2248. doi: 10.1038/srep02248
    Lu Q J, Zhou S Q, Li B, et al. Mesopore-rich carbon flakes derived from lotus leaves and it's ultrahigh performance for supercapacitors[J]. Electrochimica Acta,2020,333:135481. doi: 10.1016/j.electacta.2019.135481
    Yan X C, Jia Y, Zhuang L Z, et al. Defective carbons derived from Macadamia nut shell biomass for efficient oxygen reduction and supercapacitors[J]. Chemelectrochem,2018,5(14):1874-1879. doi: 10.1002/celc.201800068
    Nath N C D, Shah S S, Qasem M A A, et al. Defective carbon nanosheets derived from syzygium cumini leaves for electrochemical energy-storage[J]. Chemistryselect,2019,4(31):9079-9083. doi: 10.1002/slct.201900891
    Welham N J, Berbenni V, Chapman P G. Effect of extended ball milling on graphite[J]. Journal of Alloys and Compounds,2003,349(1-2):255-263. doi: 10.1016/S0925-8388(02)00880-0
    Yue X, Wang H, Wang S, et al. In-plane defects produced by ball-milling of expanded graphite[J]. Journal of Alloys and Compounds,2010,505(1):286-290. doi: 10.1016/j.jallcom.2010.06.048
    Dong Y, Lin X, Wang D, et al. Modulating the defects of graphene blocks by ball-milling for ultrahigh gravimetric and volumetric performance and fast sodium storage[J]. Energy Storage Materials,2020,30:287-295. doi: 10.1016/j.ensm.2020.05.016
    Abioye A M, Ani F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review[J]. Renewable & Sustainable Energy Reviews,2015,52:1282-1293.
    Sun K L, Yu S S, Hu Z L, et al. Oxygen-containing hierarchically porous carbon materials derived from wild jujube pit for high-performance supercapacitor[J]. Electrochimica Acta,2017,231:417-428. doi: 10.1016/j.electacta.2017.02.078
    Zhao N, Deng L B, Luo D W, et al. Oxygen doped hierarchically porous carbon for electrochemical supercapacitor[J]. International Journal of Electrochemical Science,2018,13(11):10626-10634.
    Liu M C, Kong L B, Zhang P, et al. Porous wood carbon monolith for high-performance supercapacitors[J]. Electrochimica Acta,2012,60:443-448. doi: 10.1016/j.electacta.2011.11.100
    Wang D W, Li F, Liu M, et al. Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation[J]. New Carbon Materials,2007,22(4):307-314. doi: 10.1016/S1872-5805(08)60002-5
    Li X R, Jiang Y H, Wang P Z, et al. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors[J]. New Carbon Materials,2020,35(3):232-243. doi: 10.1016/S1872-5805(20)60487-5
    Sahoo G, Polaki S R, Ghosh S, et al. Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance[J]. Energy Storage Materials,2018,14:297-305. doi: 10.1016/j.ensm.2018.05.011
    Jiang L L, Sheng L Z, Long C L, et al. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors[J]. Advanced Energy Materials,2015,5(15):1500771. doi: 10.1002/aenm.201500771
    Anjos D M, McDonough J K, Perre E, et al. Pseudocapacitance and performance stability of quinone-coated carbon onions[J]. Nano Energy,2013,2(5):702-712. doi: 10.1016/j.nanoen.2013.08.003
    Yuan S, Huang X, Wang H, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry,2020,51:396-404. doi: 10.1016/j.jechem.2020.04.004
    Shen W, Fan W. Nitrogen-containing porous carbons: Synthesis and application[J]. Journal of Materials Chemistry A,2013,1(4):999-1013. doi: 10.1039/C2TA00028H
    Wei W, Chen Z, Zhang Y, et al. Full-faradaic-active nitrogen species doping enables high-energy-density carbon-based supercapacitor[J]. Journal of Energy Chemistry,2020,48:277-284. doi: 10.1016/j.jechem.2020.02.011
    Lin L, Xie H M, Lei Y, et al. Nitrogen source-mediated cocoon silk-derived N, O-doped porous carbons for high performance symmetric supercapacitor[J]. Journal of Materials Science-Materials in Electronics,2020,31(13):10825-10835. doi: 10.1007/s10854-020-03634-x
    Guo J, Wu D L, Wang T, et al. P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor[J]. Applied Surface Science,2019,475:56-66. doi: 10.1016/j.apsusc.2018.12.095
    Jin H, Feng X, Li J, et al. Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance[J]. Angewandte Chemie-Internation Edition,2019,58(8):2397-2401. doi: 10.1002/anie.201813686
    Zhou J, Lian J, Hou L, et al. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres[J]. Nature Communications,2015,6:8503. doi: 10.1038/ncomms9503
    Zhou J, Xu L, Li L, et al. Polytetrafluoroethylene-assisted N/F co-doped hierarchically porous carbon as a high performance electrode for supercapacitors[J]. Journal of Colloid and Interface Science,2019,545:25-34. doi: 10.1016/j.jcis.2019.03.010
    Guo H L, Gao Q M. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor[J]. Journal of Power Sources,2009,186(2):551-556. doi: 10.1016/j.jpowsour.2008.10.024
    Wang Y K, Zhang M K, Dai Y, et al. Nitrogen and phosphorus co-doped silkworm-cocoon-based self-activated porous carbon for high performance supercapacitors[J]. Journal of Power Sources,2019,438:227045. doi: 10.1016/j.jpowsour.2019.227045
    Huo S L, Zhao Y B, Zong M Z, et al. Boosting supercapacitor and capacitive deionization performance of hierarchically porous carbon by polar surface and structural engineering[J]. Journal of Materials Chemistry A,2020,8(5):2505-2517. doi: 10.1039/C9TA12170F
    Ren G Y, Li Y N, Chen Q S, et al. Sepia-derived N, P co-doped porous carbon spheres as oxygen reduction reaction electrocatalyst and supercapacitor[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):16032-16038.
    Tang B, Zheng L P, Dai X C, et al. Nitrogen/oxygen co-doped porous carbons derived from a facilely-synthesized Schiff-base polymer for high-performance supercapacitor[J]. Journal of Energy Storage,2019,26:100961. doi: 10.1016/j.est.2019.100961
    Wang P Z, Luo W X, Guo N N, et al. Nitrogen and oxygen co-doped hierarchical porous carbon for high performance supercapacitor electrodes[J]. Chemical Physics Letters,2019,730:32-38. doi: 10.1016/j.cplett.2019.05.032
    Jia S, Wei J, Meng X T, et al. Facile and friendly preparation of N/S Co-doped graphene-like carbon nanosheets with hierarchical pore by molten salt for all-solid-state supercapacitor[J]. Electrochimica Acta,2020,331:135338. doi: 10.1016/j.electacta.2019.135338
    Ping Y J, Han J Z, Li J J, et al. N, S co-doped porous carbons from natural Juncus effuses for high performance supercapacitors[J]. Diamond and Related Materials,2019,100:107577. doi: 10.1016/j.diamond.2019.107577
    Na W, Jun J, Park J W, et al. Highly porous carbon nanofibers co-doped with fluorine and nitrogen for outstanding supercapacitor performance[J]. Journal of Materials Chemistry A,2017,5(33):17379-17387. doi: 10.1039/C7TA04406B
    Ling Z, Wang Z Y, Zhang M D, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials,2016,26(1):111-119. doi: 10.1002/adfm.201504004
    Zhao Z C, Xie Y B. Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires[J]. Journal of Power Sources,2018,400:264-276. doi: 10.1016/j.jpowsour.2018.08.032
    Wang C S, Liu T Z. Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor[J]. Journal of Alloys and Compounds,2017,696:42-50. doi: 10.1016/j.jallcom.2016.11.206
    Choi J H, Kim Y, Kim B S. Multifunctional role of reduced graphene oxide binder for high performance supercapacitor with commercial-level mass loading[J]. Journal of Power Sources,2020,454:227917. doi: 10.1016/j.jpowsour.2020.227917
    Xu B, Wang H, Zhu Q, et al. Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes[J]. Energy Storage Materials,2018,12:128-136. doi: 10.1016/j.ensm.2017.12.006
    Yang S, Zhao F Y, Li X R, et al. Electrode structural changes and their effects on capacitance performance during preparation and charge-discharge processes[J]. Journal of Energy Storage,2019,24:100799. doi: 10.1016/j.est.2019.100799
    Weng Z, Su Y, Wang D W, et al. Graphene-cellulose paper flexible supercapacitors[J]. Advanced Energy Materials,2011,1(5):917-922. doi: 10.1002/aenm.201100312
    Liu C X, Chen J, Zhang C F, et al. Facile preparation of binder free electrode for electrochemical capacitors based on reduced graphene oxide composite film[J]. Journal of Electroanalytical Chemistry,2019,847:113133. doi: 10.1016/j.jelechem.2019.05.015
    Zhang X R, Yang S, Jiang Y H, et al. Multi-dimensional graded electrodes with enhanced capacitance and superior cyclic stability[J]. Journal of Power Sources,2021,481:228911. doi: 10.1016/j.jpowsour.2020.228911
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (225) PDF downloads(88) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint