Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
LI Xu, WANG Xiao-yi, SUN Jie. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries. New Carbon Mater., 2021, 36(1): 106-116. doi: 10.1016/S1872-5805(21)60008-2
Citation: LI Xu, WANG Xiao-yi, SUN Jie. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries. New Carbon Mater., 2021, 36(1): 106-116. doi: 10.1016/S1872-5805(21)60008-2

Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries

doi: 10.1016/S1872-5805(21)60008-2
Funds:  This work was supported by the National Natural Science Foundation of China (22005215), Hebei Province Innovation Ability Promotion Project (20544401D, 20312201D), Tianjin Science and Technology Project (S19SLSL013)
More Information
  • Author Bio:

    LI Xu, Master. E-mail: lixu01296@163.com

  • Corresponding author: SUN Jie, Professor. E-mail: jies@tju.edu.cn
  • Received Date: 2020-11-02
  • Rev Recd Date: 2020-12-07
  • Publish Date: 2021-02-01
  • Secondary-ion batteries, such as lithium-ion (LIBs) and sodium-ion batteries (SIBs), have become a hot research topic owing to their high safety and long cycling life. The electrode materials for LIB/SIBs need to be further developed to achieve high energy and power densities. Anode/cathode active materials based on their alloying/dealloying with lithium, such as the anode materials of silicon, phosphorus, germanium and tin, and the cathode material of sulfur, have a high specific capacity. However, their large volume changes during charging/discharging, the insulating nature of phosphorus and sulfur, as well as the shuttling of polysulfides in a battery with a sulfur cathode decrease their specific capacity and cycling performance. The formation of dendrites in anodes during the deposition/dissolution of Li and Na leads to severe safety issue and hinders their practical use. Carbon materials produced from abundant natural resources have a variety of structures and excellent conductivity making them suitable host frameworks for loading high specific capacity anode/cathode materials. Recent progress in this area is reviewed with a focus on the factors affecting their electrochemical performance as the hosts of active materials. It is found that the mass loading of the active materials and the energy density of the batteries can be enhanced by increasing the specific surface area and pore volume of the carbon frameworks. Large volume changes can be efficiently accommodated using high pore volume carbon frameworks and a moderate loading of the active material. Suppression of the shuttling of polysulfides and therefore a long cycling life can be achieved by increasing the number of binding sites and their binding affinity with polysulfides by surface modification of the carbon frameworks. Dendrite growth can be inhibited by a combination of a high specific surface area and appropriate interface modification. Rate performance can be improved by designing the pore structure to shorten Li+/Na+ diffusion paths and increasing the electrical conductivity of the carbon frameworks. DFT calculations and simulations can be used to design the structures of carbon frameworks and predict their electrochemical performance.
  • loading
  • [1]
    Yang G, Ilango P R, Wang S, et al. Carbon-based alloy-type composite anode materials toward sodium-ion batteries[J]. Small,2019,15(22):1900628-1900656. doi: 10.1002/smll.201900628
    [2]
    Cui Q, Zhong Y, Pan L, et al. Recent advances in designing high-capacity anode nanomaterials for Li-ion batteries and their atomic-scale storage mechanism studies[J]. Advanced Science,2018,5(7):1700902-1700923. doi: 10.1002/advs.201700902
    [3]
    Wang L, He X, Li J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries[J]. Angewandte Chemie International Edition,2012,124:9168. doi: 10.1002/anie.201204591
    [4]
    Shen C, Ko T, Chiu K, et al. Recycled silicon powder coated on carbon paper used as the anode of lithium ion batteries[J]. New Carbon Materials,2019,34(2):140-145. doi: 10.1016/S1872-5805(19)60007-7
    [5]
    Liu H, Qiao W, Zhan L, et al. In situ growth of a carbon nanofiber/Si composite and its application in Li-ion storage[J]. New Carbon Materials,2009,24(2):124-130. doi: 10.1016/S1872-5805(08)60042-6
    [6]
    Liu H, Cheng X, Zhang R, et al. Mesoporous graphene hosts for dendrite-free lithium metal anode in working rechargeable batteries[J]. Transactions of Tianjin University,2020,26(2):127-134. doi: 10.1007/s12209-020-00241-z
    [7]
    Ye C, Chao D, Shan J, et al. Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically[J]. Matter,2020,2(2):323-344. doi: 10.1016/j.matt.2019.12.020
    [8]
    Li H, Zhao M, Jin B, et al. Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries[J]. Small,2020,16(29):1907464-1907473. doi: 10.1002/smll.201907464
    [9]
    Li Z, Guan B Y, Zhang J, et al. A Compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries[J]. Joule,2017,1(3):576-587. doi: 10.1016/j.joule.2017.06.003
    [10]
    Liu C, Wang Y, Sun J, et al. A review on applications of layered phosphorus in energy storage[J]. Transactions of Tianjin University,2020,26:104-126. doi: 10.1007/s12209-019-00230-x
    [11]
    Zhang C, Lin Z, Yang Z, et al. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage[J]. Chemistry of Materials,2015,27(6):2189-2194. doi: 10.1021/acs.chemmater.5b00218
    [12]
    Liu S, Xu H, Bian X, et al. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries[J]. ACS Nano,2018,12(7):7380-7387. doi: 10.1021/acsnano.8b04075
    [13]
    Yue Z, Gupta T, Wang F, et al. Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries[J]. Carbon,2018,127:588-595. doi: 10.1016/j.carbon.2017.11.043
    [14]
    Kong J, Yee W A, Wei Y, et al. Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes[J]. Nanoscale,2013,5(7):2967-2973. doi: 10.1039/c3nr34024d
    [15]
    Li X, Dhanabalan A, Gu L, et al. Three-dimensional porous core-shell Sn@Carbon composite anodes for high-performance lithium-ion battery applications[J]. Advanced Energy Materials,2012,2(2):238-244. doi: 10.1002/aenm.201100380
    [16]
    Nam D H, Hong K S, Lim S J, et al. Electrochemical properties of electrodeposited Sn anodes for Na-Ion batteries[J]. The Journal of Physical Chemistry C,2014,118(35):20086-20093. doi: 10.1021/jp504055j
    [17]
    Wang Z, Shen J, Liu J, et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries[J]. Advanced Materials,2019,31(33):1902228-1902238. doi: 10.1002/adma.201902228
    [18]
    Liu B, Zhang Q, Li L, et al. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries[J]. ACS Nano,2019,13(11):13513-13523. doi: 10.1021/acsnano.9b07428
    [19]
    Chi S S, Qi X G, Hu Y S., et al. 3D flexible carbon felt host for highly stable sodium metal anodes[J]. Advanced Energy Materials,2018,8(15):1702764-1702773. doi: 10.1002/aenm.201702764
    [20]
    Jin C, Sheng O, Luo J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy,2017,37:177-186. doi: 10.1016/j.nanoen.2017.05.015
    [21]
    Hu C, Kirk C, Cai Q, et al. A high-volumetric-capacity cathode based on interconnected close-packed N-doped porous carbon nanospheres for long-life lithium-sulfur batteries[J]. Advanced Energy Materials,2017,7(22):1701082-1701090. doi: 10.1002/aenm.201701082
    [22]
    Liu D, Huang X, Qu D, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries[J]. Nano Energy,2018,52:1-10. doi: 10.1016/j.nanoen.2018.07.023
    [23]
    Li S, Wang Z, Liu J, et al. Yolk-shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries[J]. ACS Applied Materials Interfaces,2016,8(30):19438-19445. doi: 10.1021/acsami.6b04736
    [24]
    Park Y, Choi N S, Park S, et al. Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries[J]. Advanced Energy Materials,2013,3(2):206-212. doi: 10.1002/aenm.201200389
    [25]
    Yao S, Cui J, Huang J, et al. Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries[J]. Advanced Energy Materials,2018,8(7):1702267-1702279. doi: 10.1002/aenm.201702267
    [26]
    Chung S H, Chang C H, Manthiram A. A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries[J]. ACS Nano,2016,10(11):10462-10470. doi: 10.1021/acsnano.6b06369
    [27]
    Niu S, Wu S, Lu W, et al. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials,2017,32(4):289-296. doi: 10.1016/S1872-5805(17)60123-9
    [28]
    Liu Y, Zhang N, Jiao L, et al. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J]. Advanced Materials,2015,27(42):6702-6707. doi: 10.1002/adma.201503015
    [29]
    Pan F, Cao Y, Xu M, et al. A layered-nanospace-confinement strategy for the synthesis of two-dimensional tin/carbon anode for Li-/Na-ion batteries[J]. Materials Letters,2020,273:127909-127912. doi: 10.1016/j.matlet.2020.127909
    [30]
    Pan X, Liu Y, Wang X, et al. Sulfidation of iron confined in nitrogen-doped carbon nanotubes to prepare novel anode materials for lithium ion batteries[J]. New Carbon Materials,2018,33(6):544-553. doi: 10.1016/S1872-5805(18)60356-7
    [31]
    Zhu Y, Wang Y, Gao C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Materials,2020,35(4):358-370. doi: 10.1016/S1872-5805(20)60494-2
    [32]
    Kim Y, Park Y, Choi A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials,2013,25(22):3045-3049. doi: 10.1002/adma.201204877
    [33]
    Shi H, Zhao X, Wu Z S, et al. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries[J]. Nano Energy,2019,60:743-751. doi: 10.1016/j.nanoen.2019.04.006
    [34]
    Qie L, Chen W M, Wang Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials,2012,24(15):2047-2050. doi: 10.1002/adma.201104634
    [35]
    Ngo D T, Le H T T, Kim C, et al. Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries[J]. Energy & Environmental Science,2015,8(12):3577-3588.
    [36]
    Zhou J, Jiang Z, Niu S, et al. Self-standing hierarchical P/CNTs@rGO with unprecedented capacity and stability for lithium and sodium storage[J]. Chem,2018,4(2):372-385. doi: 10.1016/j.chempr.2018.01.006
    [37]
    Deng W, Zhu W, Zhou X, et al. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity[J]. Energy Storage Materials,2018,15:266-273. doi: 10.1016/j.ensm.2018.05.005
    [38]
    Kim S O, Manthiram A. High-performance red P-based P–TiP2–C nanocomposite anode for lithium-ion and sodium-ion storage[J]. Chemistry of Materials,2016,28(16):5935-5942. doi: 10.1021/acs.chemmater.6b02482
    [39]
    Han X, Zhang Z, Han M, et al. Fabrication of red phosphorus anode for fast-charging lithium-ion batteries based on TiN/TiP2-enhanced interfacial kinetics[J]. Energy Storage Materials,2020,26:147-156. doi: 10.1016/j.ensm.2019.12.044
    [40]
    Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule,2018,2(4):764-777. doi: 10.1016/j.joule.2018.02.001
    [41]
    Liu S, Xia X, Yao Z, et al. Straw-brick-like carbon fiber cloth/lithium composite electrode as an advanced lithium metal anode[J]. Small Methods,2018,2(8):1800035-1800042. doi: 10.1002/smtd.201800035
    [42]
    Chu C, Wang N, Li L, et al. Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes[J]. Energy Storage Materials,2019,23:137-143. doi: 10.1016/j.ensm.2019.05.020
    [43]
    Liu Y, Qin X, Zhang S, et al. Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode[J]. Energy Storage Materials,2019,18:320-327. doi: 10.1016/j.ensm.2018.08.018
    [44]
    Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology,2019,14(6):594-601. doi: 10.1038/s41565-019-0427-9
    [45]
    Shin W H, Jeong H M, Kim B G, et al. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J]. Nano Letters,2012,12(5):2283-2288. doi: 10.1021/nl3000908
    [46]
    Shen W, Wang C, Xu Q, et al. Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials[J]. Advanced Energy Materials,2015,5(1):1400982-1400992. doi: 10.1002/aenm.201400982
    [47]
    Jiao X, Liu Y, Li T, et al. Crumpled nitrogen-doped graphene-wrapped phosphorus composite as a promising anode for lithium-ion batteries[J]. ACS Applied Materials Interfaces,2019,11(34):30858-30864. doi: 10.1021/acsami.9b08915
    [48]
    Guo Y, Niu P, Liu Y, et al. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes[J]. Advanced Materials,2019,31(27):1900342-1900351. doi: 10.1002/adma.201900342
    [49]
    Lu Z, Liang Q, Wang B, et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes[J]. Advanced Energy Materials,2019,9(7):1803186-1803193. doi: 10.1002/aenm.201803186
    [50]
    Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition,2017,56(27):7764-7768. doi: 10.1002/anie.201702099
    [51]
    Liu L, Yin Y X, Li J Y, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials,2018,30(10):1706216-1706223. doi: 10.1002/adma.201706216
    [52]
    Liu K, Li Z, Xie W, et al. Oxygen-rich carbon nanotube networks for enhanced lithium metal anode[J]. Energy Storage Materials,2018,15:308-314. doi: 10.1016/j.ensm.2018.05.025
    [53]
    Ye L, Liao M, Zhao T, et al. A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries[J]. Angewandte Chemie International Edition,2019,58(47):17054-17060. doi: 10.1002/anie.201910202
    [54]
    Peng H J, Hou T Z, Zhang Q, et al. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation[J]. Advanced Materials Interfaces,2014,1(7):1400227-1400236. doi: 10.1002/admi.201400227
    [55]
    Zhong Y, Wang S, Sha Y, et al. Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2016,4(24):9526-9535. doi: 10.1039/C6TA03187K
    [56]
    Zhang X Q, Cheng X B, Chen X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials,2017,27(10):1605989-1605996. doi: 10.1002/adfm.201605989
    [57]
    Luo J, Fang C C, Wu N L. High polarity poly (vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials,2018,8(2):1701482-1701488. doi: 10.1002/aenm.201701482
    [58]
    Jin C, Sheng O, Zhang W, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Materials,2018,15:218-225. doi: 10.1016/j.ensm.2018.04.001
    [59]
    Cai J, Wu C, Zhu Y, et al. Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries[J]. Journal of Power Sources,2017,341:165-174. doi: 10.1016/j.jpowsour.2016.12.008
    [60]
    Liu J, Li W, Duan L, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters,2015,15(8):5137-5142. doi: 10.1021/acs.nanolett.5b01919
    [61]
    Zheng X, Li P, Cao Z, et al. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers[J]. Small,2019,15(41):1902688-1902696. doi: 10.1002/smll.201902688
    [62]
    Pang Q, Tang J, Huang H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries[J]. Advanced Materials,2015,27(39):6021-6028. doi: 10.1002/adma.201502467
    [63]
    Gao C, Feng J, Dai J, et al. Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage[J]. Carbon,2019,153:372-380. doi: 10.1016/j.carbon.2019.07.047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(1186) PDF Downloads(220) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return