Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
LI Xu, WANG Xiao-yi, SUN Jie. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 106-116. doi: 10.1016/S1872-5805(21)60008-2
Citation: LI Xu, WANG Xiao-yi, SUN Jie. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 106-116. doi: 10.1016/S1872-5805(21)60008-2

Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries

doi: 10.1016/S1872-5805(21)60008-2
Funds:  This work was supported by the National Natural Science Foundation of China (22005215), Hebei Province Innovation Ability Promotion Project (20544401D, 20312201D), Tianjin Science and Technology Project (S19SLSL013)
More Information
  • Author Bio:

    LI Xu, Master. E-mail: lixu01296@163.com

  • Corresponding author: SUN Jie, Professor. E-mail: jies@tju.edu.cn
  • Received Date: 2020-11-02
  • Rev Recd Date: 2020-12-07
  • Available Online: 2021-02-03
  • Publish Date: 2021-02-02
  • Secondary-ion batteries, such as lithium-ion (LIBs) and sodium-ion batteries (SIBs), have become a hot research topic owing to their high safety and long cycling life. The electrode materials for LIB/SIBs need to be further developed to achieve high energy and power densities. Anode/cathode active materials based on their alloying/dealloying with lithium, such as the anode materials of silicon, phosphorus, germanium and tin, and the cathode material of sulfur, have a high specific capacity. However, their large volume changes during charging/discharging, the insulating nature of phosphorus and sulfur, as well as the shuttling of polysulfides in a battery with a sulfur cathode decrease their specific capacity and cycling performance. The formation of dendrites in anodes during the deposition/dissolution of Li and Na leads to severe safety issue and hinders their practical use. Carbon materials produced from abundant natural resources have a variety of structures and excellent conductivity making them suitable host frameworks for loading high specific capacity anode/cathode materials. Recent progress in this area is reviewed with a focus on the factors affecting their electrochemical performance as the hosts of active materials. It is found that the mass loading of the active materials and the energy density of the batteries can be enhanced by increasing the specific surface area and pore volume of the carbon frameworks. Large volume changes can be efficiently accommodated using high pore volume carbon frameworks and a moderate loading of the active material. Suppression of the shuttling of polysulfides and therefore a long cycling life can be achieved by increasing the number of binding sites and their binding affinity with polysulfides by surface modification of the carbon frameworks. Dendrite growth can be inhibited by a combination of a high specific surface area and appropriate interface modification. Rate performance can be improved by designing the pore structure to shorten Li+/Na+ diffusion paths and increasing the electrical conductivity of the carbon frameworks. DFT calculations and simulations can be used to design the structures of carbon frameworks and predict their electrochemical performance.
  • loading
  • [1]
    Yang G, Ilango P R, Wang S, et al. Carbon-based alloy-type composite anode materials toward sodium-ion batteries[J]. Small,2019,15(22):1900628-1900656. doi: 10.1002/smll.201900628
    Cui Q, Zhong Y, Pan L, et al. Recent advances in designing high-capacity anode nanomaterials for Li-ion batteries and their atomic-scale storage mechanism studies[J]. Advanced Science,2018,5(7):1700902-1700923. doi: 10.1002/advs.201700902
    Wang L, He X, Li J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries[J]. Angewandte Chemie International Edition,2012,124:9168. doi: 10.1002/anie.201204591
    Shen C, Ko T, Chiu K, et al. Recycled silicon powder coated on carbon paper used as the anode of lithium ion batteries[J]. New Carbon Materials,2019,34(2):140-145. doi: 10.1016/S1872-5805(19)60007-7
    Liu H, Qiao W, Zhan L, et al. In situ growth of a carbon nanofiber/Si composite and its application in Li-ion storage[J]. New Carbon Materials,2009,24(2):124-130. doi: 10.1016/S1872-5805(08)60042-6
    Liu H, Cheng X, Zhang R, et al. Mesoporous graphene hosts for dendrite-free lithium metal anode in working rechargeable batteries[J]. Transactions of Tianjin University,2020,26(2):127-134. doi: 10.1007/s12209-020-00241-z
    Ye C, Chao D, Shan J, et al. Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically[J]. Matter,2020,2(2):323-344. doi: 10.1016/j.matt.2019.12.020
    Li H, Zhao M, Jin B, et al. Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries[J]. Small,2020,16(29):1907464-1907473. doi: 10.1002/smll.201907464
    Li Z, Guan B Y, Zhang J, et al. A Compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries[J]. Joule,2017,1(3):576-587. doi: 10.1016/j.joule.2017.06.003
    Liu C, Wang Y, Sun J, et al. A review on applications of layered phosphorus in energy storage[J]. Transactions of Tianjin University,2020,26:104-126. doi: 10.1007/s12209-019-00230-x
    Zhang C, Lin Z, Yang Z, et al. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage[J]. Chemistry of Materials,2015,27(6):2189-2194. doi: 10.1021/acs.chemmater.5b00218
    Liu S, Xu H, Bian X, et al. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries[J]. ACS Nano,2018,12(7):7380-7387. doi: 10.1021/acsnano.8b04075
    Yue Z, Gupta T, Wang F, et al. Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries[J]. Carbon,2018,127:588-595. doi: 10.1016/j.carbon.2017.11.043
    Kong J, Yee W A, Wei Y, et al. Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes[J]. Nanoscale,2013,5(7):2967-2973. doi: 10.1039/c3nr34024d
    Li X, Dhanabalan A, Gu L, et al. Three-dimensional porous core-shell Sn@Carbon composite anodes for high-performance lithium-ion battery applications[J]. Advanced Energy Materials,2012,2(2):238-244. doi: 10.1002/aenm.201100380
    Nam D H, Hong K S, Lim S J, et al. Electrochemical properties of electrodeposited Sn anodes for Na-Ion batteries[J]. The Journal of Physical Chemistry C,2014,118(35):20086-20093. doi: 10.1021/jp504055j
    Wang Z, Shen J, Liu J, et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries[J]. Advanced Materials,2019,31(33):1902228-1902238. doi: 10.1002/adma.201902228
    Liu B, Zhang Q, Li L, et al. Encapsulating red phosphorus in ultralarge pore volume hierarchical porous carbon nanospheres for lithium/sodium-ion half/full batteries[J]. ACS Nano,2019,13(11):13513-13523. doi: 10.1021/acsnano.9b07428
    Chi S S, Qi X G, Hu Y S., et al. 3D flexible carbon felt host for highly stable sodium metal anodes[J]. Advanced Energy Materials,2018,8(15):1702764-1702773. doi: 10.1002/aenm.201702764
    Jin C, Sheng O, Luo J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy,2017,37:177-186. doi: 10.1016/j.nanoen.2017.05.015
    Hu C, Kirk C, Cai Q, et al. A high-volumetric-capacity cathode based on interconnected close-packed N-doped porous carbon nanospheres for long-life lithium-sulfur batteries[J]. Advanced Energy Materials,2017,7(22):1701082-1701090. doi: 10.1002/aenm.201701082
    Liu D, Huang X, Qu D, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries[J]. Nano Energy,2018,52:1-10. doi: 10.1016/j.nanoen.2018.07.023
    Li S, Wang Z, Liu J, et al. Yolk-shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries[J]. ACS Applied Materials Interfaces,2016,8(30):19438-19445. doi: 10.1021/acsami.6b04736
    Park Y, Choi N S, Park S, et al. Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries[J]. Advanced Energy Materials,2013,3(2):206-212. doi: 10.1002/aenm.201200389
    Yao S, Cui J, Huang J, et al. Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries[J]. Advanced Energy Materials,2018,8(7):1702267-1702279. doi: 10.1002/aenm.201702267
    Chung S H, Chang C H, Manthiram A. A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries[J]. ACS Nano,2016,10(11):10462-10470. doi: 10.1021/acsnano.6b06369
    Niu S, Wu S, Lu W, et al. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials,2017,32(4):289-296. doi: 10.1016/S1872-5805(17)60123-9
    Liu Y, Zhang N, Jiao L, et al. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J]. Advanced Materials,2015,27(42):6702-6707. doi: 10.1002/adma.201503015
    Pan F, Cao Y, Xu M, et al. A layered-nanospace-confinement strategy for the synthesis of two-dimensional tin/carbon anode for Li-/Na-ion batteries[J]. Materials Letters,2020,273:127909-127912. doi: 10.1016/j.matlet.2020.127909
    Pan X, Liu Y, Wang X, et al. Sulfidation of iron confined in nitrogen-doped carbon nanotubes to prepare novel anode materials for lithium ion batteries[J]. New Carbon Materials,2018,33(6):544-553. doi: 10.1016/S1872-5805(18)60356-7
    Zhu Y, Wang Y, Gao C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Materials,2020,35(4):358-370. doi: 10.1016/S1872-5805(20)60494-2
    Kim Y, Park Y, Choi A, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials,2013,25(22):3045-3049. doi: 10.1002/adma.201204877
    Shi H, Zhao X, Wu Z S, et al. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithiumsulfur batteries[J]. Nano Energy,2019,60:743-751. doi: 10.1016/j.nanoen.2019.04.006
    Qie L, Chen W M, Wang Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials,2012,24(15):2047-2050. doi: 10.1002/adma.201104634
    Ngo D T, Le H T T, Kim C, et al. Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries[J]. Energy & Environmental Science,2015,8(12):3577-3588.
    Zhou J, Jiang Z, Niu S, et al. Self-standing hierarchical P/CNTs@rGO with unprecedented capacity and stability for lithium and sodium storage[J]. Chem,2018,4(2):372-385. doi: 10.1016/j.chempr.2018.01.006
    Deng W, Zhu W, Zhou X, et al. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity[J]. Energy Storage Materials,2018,15:266-273. doi: 10.1016/j.ensm.2018.05.005
    Kim S O, Manthiram A. High-performance red P-based P–TiP2–C nanocomposite anode for lithium-ion and sodium-ion storage[J]. Chemistry of Materials,2016,28(16):5935-5942. doi: 10.1021/acs.chemmater.6b02482
    Han X, Zhang Z, Han M, et al. Fabrication of red phosphorus anode for fast-charging lithium-ion batteries based on TiN/TiP2-enhanced interfacial kinetics[J]. Energy Storage Materials,2020,26:147-156. doi: 10.1016/j.ensm.2019.12.044
    Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule,2018,2(4):764-777. doi: 10.1016/j.joule.2018.02.001
    Liu S, Xia X, Yao Z, et al. Straw-brick-like carbon fiber cloth/lithium composite electrode as an advanced lithium metal anode[J]. Small Methods,2018,2(8):1800035-1800042. doi: 10.1002/smtd.201800035
    Chu C, Wang N, Li L, et al. Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes[J]. Energy Storage Materials,2019,23:137-143. doi: 10.1016/j.ensm.2019.05.020
    Liu Y, Qin X, Zhang S, et al. Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode[J]. Energy Storage Materials,2019,18:320-327. doi: 10.1016/j.ensm.2018.08.018
    Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology,2019,14(6):594-601. doi: 10.1038/s41565-019-0427-9
    Shin W H, Jeong H M, Kim B G, et al. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J]. Nano Letters,2012,12(5):2283-2288. doi: 10.1021/nl3000908
    Shen W, Wang C, Xu Q, et al. Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials[J]. Advanced Energy Materials,2015,5(1):1400982-1400992. doi: 10.1002/aenm.201400982
    Jiao X, Liu Y, Li T, et al. Crumpled nitrogen-doped graphene-wrapped phosphorus composite as a promising anode for lithium-ion batteries[J]. ACS Applied Materials Interfaces,2019,11(34):30858-30864. doi: 10.1021/acsami.9b08915
    Guo Y, Niu P, Liu Y, et al. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes[J]. Advanced Materials,2019,31(27):1900342-1900351. doi: 10.1002/adma.201900342
    Lu Z, Liang Q, Wang B, et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes[J]. Advanced Energy Materials,2019,9(7):1803186-1803193. doi: 10.1002/aenm.201803186
    Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition,2017,56(27):7764-7768. doi: 10.1002/anie.201702099
    Liu L, Yin Y X, Li J Y, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials,2018,30(10):1706216-1706223. doi: 10.1002/adma.201706216
    Liu K, Li Z, Xie W, et al. Oxygen-rich carbon nanotube networks for enhanced lithium metal anode[J]. Energy Storage Materials,2018,15:308-314. doi: 10.1016/j.ensm.2018.05.025
    Ye L, Liao M, Zhao T, et al. A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries[J]. Angewandte Chemie International Edition,2019,58(47):17054-17060. doi: 10.1002/anie.201910202
    Peng H J, Hou T Z, Zhang Q, et al. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation[J]. Advanced Materials Interfaces,2014,1(7):1400227-1400236. doi: 10.1002/admi.201400227
    Zhong Y, Wang S, Sha Y, et al. Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2016,4(24):9526-9535. doi: 10.1039/C6TA03187K
    Zhang X Q, Cheng X B, Chen X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials,2017,27(10):1605989-1605996. doi: 10.1002/adfm.201605989
    Luo J, Fang C C, Wu N L. High polarity poly (vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials,2018,8(2):1701482-1701488. doi: 10.1002/aenm.201701482
    Jin C, Sheng O, Zhang W, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Materials,2018,15:218-225. doi: 10.1016/j.ensm.2018.04.001
    Cai J, Wu C, Zhu Y, et al. Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries[J]. Journal of Power Sources,2017,341:165-174. doi: 10.1016/j.jpowsour.2016.12.008
    Liu J, Li W, Duan L, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters,2015,15(8):5137-5142. doi: 10.1021/acs.nanolett.5b01919
    Zheng X, Li P, Cao Z, et al. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers[J]. Small,2019,15(41):1902688-1902696. doi: 10.1002/smll.201902688
    Pang Q, Tang J, Huang H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries[J]. Advanced Materials,2015,27(39):6021-6028. doi: 10.1002/adma.201502467
    Gao C, Feng J, Dai J, et al. Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage[J]. Carbon,2019,153:372-380. doi: 10.1016/j.carbon.2019.07.047
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (167) PDF downloads(122) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint