Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
SHENG Lizhi, ZHAO Yunyun, HOU Baoquan, XIAO Zhenpeng, JIANG Lili, FAN Zhuangjun. N-doped layered porous carbon electrodes with high mass loadings for high-performance supercapacitors. New Carbon Mater., 2021, 36(1): 179-188. doi: 10.1016/S1872-5805(21)60012-4
Citation: SHENG Lizhi, ZHAO Yunyun, HOU Baoquan, XIAO Zhenpeng, JIANG Lili, FAN Zhuangjun. N-doped layered porous carbon electrodes with high mass loadings for high-performance supercapacitors. New Carbon Mater., 2021, 36(1): 179-188. doi: 10.1016/S1872-5805(21)60012-4

N-doped layered porous carbon electrodes with high mass loadings for high-performance supercapacitors

doi: 10.1016/S1872-5805(21)60012-4
Funds:  The authors acknowledge financial support from the National Natural Science Foundation of China (51902006, 51702117, 51672055, 51972342), Taishan Scholar Project of Shandong Province (ts20190922), Key Basic Research Projects of Natural Science Foundation of Shandong province (ZR2019ZD51), Department of Science and Technology of Jilin Province (20190103034JH, 20180520014JH), and Young Elite Scientist Sponsorship Program by Jilin Province Association for Science and Technology (192009), Education Department of Jilin Province (JJKH2021KJ)
More Information
  • Corresponding author: SHENG Lizhi. E-mail:shengli_zhi@126.com; FAN Zhuangjun, Emails: fanzhj666@163.com
  • Received Date: 2021-01-03
  • Rev Recd Date: 2021-01-11
  • Publish Date: 2021-02-01
  • We report a porous carbon material (NPCM) with a high N content as a high-performance supercapacitor electrode material which was prepared by a simple activation-doping process using Metaplexis Japonica shell as the carbon precursor, ammonium chloride as the nitrogen source and zinc chloride as the activation agent. Its high electrical conductivity, large ion-accessible surface area and fast ion transport ability make it possible to achieve a high mass loading of NPCM per area of the electrode and a high energy and high power density supercapacitor. An electrode with a low NPCM mass loading of 1 mg cm−2 has a gravimetric specific capacitance of 457 F g−1 and an areal specific capacitance of 47.8 μF cm−2. At a much high NPCM loading of 17.7 mg cm−2 it has a high gravimetric capacitance of 161 F g−1. Furthermore, an assembled NPCM//NPCM symmetric supercapacitor with an optimal NPCM loading of 12.3 mg cm−2 delivered a high specific energy of 12.5 Wh kg−1 at an ultrahigh power of 80 kW kg−1 in 1 mol L-1 Na2SO4. The achievement of such high-energy and high-power densities using NPCM will open exciting opportunities for carbon-based supercapacitors in many different applications.
  • loading
  • [1]
    Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-139. doi: 10.1016/S1872-5805(19)60006-5
    [2]
    Sun S, Han F, Wu X, et al. One-step synthesis of biomass derived O, N-codoped hierarchical porous carbon with high surface area for supercapacitors[J]. Chinese Chemical Letters,2020,31(9):2235-2238. doi: 10.1016/j.cclet.2019.11.023
    [3]
    Wei F, Bi H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Physico-Chimica Sinica,2020,36(2):1903043-1903040. doi: 10.3866/PKU.WHXB201903043
    [4]
    Lin Y, Chen Z, Yu C, et al. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(3):3389-3403.
    [5]
    Li Z, Gadipelli S, Li H, et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage[J]. Nature Energy,2020,5(2):160-168. doi: 10.1038/s41560-020-0560-6
    [6]
    Zhu J, Dong Y, Zhang S, et al. Application of carbon-/graphene quantum dots for supercapacitors[J]. Acta Physico-Chimica Sinica,2020,36(2):1903052-1903050. doi: 10.3866/PKU.WHXB201903052
    [7]
    Mao N, Wang H, Sui Y, et al. Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading[J]. Nano Research,2017,10(5):1767-1783. doi: 10.1007/s12274-017-1486-6
    [8]
    Wang Y, Liu R, Tian Y, et al. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors[J]. Chemical Engineering Journal,2020,384:123263. doi: 10.1016/j.cej.2019.123263
    [9]
    Yao Y, Xiao Z, Liu P, et al. Facile synthesis of 2D ultrathin and ultrahigh specific surface hierarchical porous carbon nanosheets for advanced energy storage[J]. Carbon,2019,155:674-685. doi: 10.1016/j.carbon.2019.09.010
    [10]
    Sun X, Zhang X, Zhang H, et al. A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes[J]. Journal of Solid State Electrochemistry,2012,16(8):2597-2603. doi: 10.1007/s10008-012-1678-7
    [11]
    Zhang Q, Han K, Li S, et al. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors[J]. Nanoscale,2018,10(5):2427-2437. doi: 10.1039/C7NR07158B
    [12]
    Du W, Zhang Z, Du L, et al. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors[J]. Journal of Alloys and Compounds,2019,797:1031-1040. doi: 10.1016/j.jallcom.2019.05.207
    [13]
    Li M, Xiao H, Zhang T, et al. Activated carbon fiber derived from sisal with large specific surface area for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(5):4716-4723.
    [14]
    Song M, Zhou Y, Ren X, et al. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance[J]. Journal of Colloid and Interface Science,2019,535:276-286. doi: 10.1016/j.jcis.2018.09.055
    [15]
    Wu F, Gao J, Zhai X, et al. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors[J]. Carbon,2019,147:242-251. doi: 10.1016/j.carbon.2019.02.072
    [16]
    He J, Zhang D, Wang Y, et al. Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability[J]. Applied Surface Science,2020,515:146020. doi: 10.1016/j.apsusc.2020.146020
    [17]
    Xu L, Li X, Li X. Large-sized and ultrathin biomass-derived hierarchically porous carbon nanosheets prepared by a facile way for high-performance supercapacitors[J]. Applied Surface Science,2020,526:146770. doi: 10.1016/j.apsusc.2020.146770
    [18]
    Zhang M, Yu X, Ma H, et al. Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance[J]. Energy & Environmental Science,2018,11(3):559-565.
    [19]
    Xia Y, Mathis T S, Zhao M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline mxenes[J]. Nature,2018,557(7705):409-412. doi: 10.1038/s41586-018-0109-z
    [20]
    Huang T, Chu X, Cai S, et al. Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading[J]. Energy Storage Materials,2019,17:349-357. doi: 10.1016/j.ensm.2018.07.001
    [21]
    Sheng L, Chang J, Jiang L, et al. Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors[J]. Advanced Functional Materials,2018,28(21):1800597. doi: 10.1002/adfm.201800597
    [22]
    Yao B, Chandrasekaran S, Zhang J, et al. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading[J]. Joule,2019,3(2):459-470. doi: 10.1016/j.joule.2018.09.020
    [23]
    Dong Y, Zhang S, Du X, et al. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling[J]. Advanced Functional Materials,2019,29(24):1901127. doi: 10.1002/adfm.201901127
    [24]
    Zhao Y, Dong C, Sheng L, et al. Heteroatom-doped pillared porous carbon architectures with ultrafast electron and ion transport capabilities under high mass loadings for high-rate supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2020,8(23):8664-8674.
    [25]
    Ye X W, Hu L B, Liu M C, et al. Improved oxygen reduction performance of a N, S co-doped graphene-like carbon prepared by a simple carbon bath method[J]. New Carbon Materials,2020,35(5):531-539. doi: 10.1016/S1872-5805(20)60506-6
    [26]
    Li X R, Jiang Y H, Wang P Z, et al. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors[J]. New Carbon Materials,2020,35(3):232-243. doi: 10.1016/S1872-5805(20)60487-5
    [27]
    Wu M, Tong S, Jiang L, et al. Nitrogen-doped porous carbon composite with three-dimensional conducting network for high rate supercapacitors[J]. Journal of Alloys and Compounds,2020,844:156217. doi: 10.1016/j.jallcom.2020.156217
    [28]
    Xiao Z, Sheng L, Jiang L, et al. Nitrogen-doped graphene ribbons/MoS2 with ultrafast electron and ion transport for high-rate li-ion batteries[J]. Chemical Engineering Journal,2020,408:127269.
    [29]
    Zhang W, Xu C, Ma C, et al. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors[J]. Advanced Materials,2017,29(36):1701677. doi: 10.1002/adma.201701677
    [30]
    Liu J, Min S, Wang F, et al. Biomass-derived three-dimensional porous carbon membrane electrode for high-performance aqueous supercapacitors: An alternative of powdery carbon materials[J]. Journal of Power Sources,2020,466:228347. doi: 10.1016/j.jpowsour.2020.228347
    [31]
    Ardizzone S, Fregonara G, Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes[J]. Electrochimica Acta,1990,35(1):263-267. doi: 10.1016/0013-4686(90)85068-X
    [32]
    Lin T, Chen I-W, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [33]
    Sheng L, Jiang L, Wei T, et al. High volumetric energy density asymmetric supercapacitors based on well-balanced graphene and graphene-MnO2 electrodes with densely stacked architectures[J]. Small,2016,12(37):5217-5227. doi: 10.1002/smll.201601722
    [34]
    Guan L, Pan L, Peng T, et al. Synthesis of biomass-derived nitrogen-doped porous carbon nanosheests for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8405-8412.
    [35]
    Li Z, Mi H, Bai Z, et al. Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapacitors[J]. Journal of Power Sources,2019,418:112-121. doi: 10.1016/j.jpowsour.2019.02.034
    [36]
    Yang S, Wang S, Liu X, et al. Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors[J]. Carbon,2019,147:540-549. doi: 10.1016/j.carbon.2019.03.023
    [37]
    Wei X, Wei J-S, Li Y, et al. Robust hierarchically interconnected porous carbons derived from discarded rhus typhina fruits for ultrahigh capacitive performance supercapacitors[J]. Journal of Power Sources,2019,414:13-23. doi: 10.1016/j.jpowsour.2018.12.064
    [38]
    Wan L, Wei W, Xie M, et al. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode[J]. Electrochimica Acta,2019,311:72-82. doi: 10.1016/j.electacta.2019.04.106
  • 支撑信息20210001.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(1441) PDF Downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return