Volume 36 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
YAO Shan-shan, HE Yan-ping, Arslan Majeed, ZHANG Cui-juan, SHEN Xiang-qian, LI Tian-bao, QIN Shi-biao. The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries. New Carbon Mater., 2021, 36(3): 606-615. doi: 10.1016/S1872-5805(21)60032-X
Citation: YAO Shan-shan, HE Yan-ping, Arslan Majeed, ZHANG Cui-juan, SHEN Xiang-qian, LI Tian-bao, QIN Shi-biao. The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries. New Carbon Mater., 2021, 36(3): 606-615. doi: 10.1016/S1872-5805(21)60032-X

The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries

doi: 10.1016/S1872-5805(21)60032-X
More Information
  • Corresponding author: YAO Shan-shan, Associate research fellow. E-mail: yaosshan@ujs.edu.cn
  • Received Date: 2020-05-25
  • Rev Recd Date: 2020-09-01
  • Available Online: 2021-04-02
  • Publish Date: 2021-06-01
  • A 3D assembly of nitrogen-doped carbon nanofibers (NCFs) derived from polyacrylonitrile was synthesized by a combined electrospinning/carbonization technique and was used as the positive current collector in lithium sulfur (Li-S) batteries containing a Li2S6 catholyte solution. The physical and electrochemical behavior of the NCFs were investigated and it was found that their electrochemical performances depended on the pyrolysis temperature. Of the samples carbonized at 800, 900 and 1 000 °C, those carbonized at 900 °C performed best, and delivered a reversible capacity of 875 mAh•g−1 at a high sulfur loading of 4.19 mg•cm2 and retained at 707 mAh•g−1 after 250 cycles at 0.2 C. The coulombic efficiency of the NCF-900@Li2S6 electrode was almost 98.55% over the entire cycle life. In addition, the capacity retention of the electrode reached 81.53% even at a high current density of 1 C for over 150 cycles. It was found that the NCFs carbonized at 900 °C had the highest electrical conductivity, which might be the dominant factor that determined its performance for use as a positive current collector.
  • loading
  • [1]
    Manthiram A, Fu Y Z, Chung S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews,2014,114:11751-11787. doi: 10.1021/cr500062v
    [2]
    Zhang Q, Li F, Huang J Q, et al. Lithium-sulfur batteries: Co-existence of challenges and opportunities[J]. Advanced Functional Materials,2018,28:1804589. doi: 10.1002/adfm.201804589
    [3]
    Kumar R, Liu J, Hwang J Y, et al. Recent research trends in Li-S batteries[J]. Journal of Materials Chemistry A,2018,6:11582-11605. doi: 10.1039/C8TA01483C
    [4]
    Wang X W, Yang C H, Xiong X H, et al. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries[J]. Energy Storage Materials,2019,16:344-353. doi: 10.1016/j.ensm.2018.06.015
    [5]
    Fang R P, Chen K, Yin L C, et al. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries[J]. Advanced Materials,2019,31:1800863. doi: 10.1002/adma.201800863
    [6]
    Zhang L L, Wang Y J, Niu Z Q, et al. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries[J]. Carbon,2019,141:400-416. doi: 10.1016/j.carbon.2018.09.067
    [7]
    Li F F, Lu W, Niu S Z, et al. Preparation and electrochemical performance of a graphene-wrapped carbon/sulphur composite cathode[J]. New Carbon Materials,2014,29:309-315. doi: 10.1016/S1872-5805(14)60140-2
    [8]
    Niu S Z, Wu S D, Lu W, et al. A one-step hard-templating method for the preparation of a hierarchical microporou-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials,2017,32:289-296. doi: 10.1016/S1872-5805(17)60123-9
    [9]
    Ding P, Yang J, Li X D, et al. Engineering high-performance sulfur electrode from industrial conductive carbons[J]. ACS Sustainable Chemistry & Engineering,2019,7:5515-5523.
    [10]
    Arie A AA, Kristianto H, Cengiz E C, et al. Preparation of salacca peel-based porous carbons by K2CO3 activation method as cathode materials for LiS battery[J]. Carbon Letters,2020,30:207-213. doi: 10.1007/s42823-019-00085-1
    [11]
    Ansari Y, Zhang S, Wen B, et al. Stabilizing Li-S battery through multilayer encapsulation of sulfur[J]. Advanced Energy Materials,2019,9:1802213. doi: 10.1002/aenm.201802213
    [12]
    Chen M F, Zhao S, Jing S X, et al. Suppressing the polysulfide shuttle effect by heteroatom-doping for high performance lithium sulfur batteries[J]. ACS Sustainable Chemistry & Engineering,2018,6:7545-7557.
    [13]
    Yao S, Xue S, Peng S, et al. Electrospun zeolitic imidazolate framework-derived nitrogen-doped carbon nanofibers with high performance for lithium-sulfur batteries[J]. International Journal of Energy Research,2019,43:1892-1902. doi: 10.1002/er.4389
    [14]
    Wu J X, Pan Z Y, Zhang Y, et al. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries[J]. Journal of Materials Chemistry A,2018,6:12932-12944. doi: 10.1039/C8TA03968B
    [15]
    Inagaki M, Toyoda M, Soneda Y, et al. Nitrogen-doped carbon materials[J]. Carbon,2018,132:104-140. doi: 10.1016/j.carbon.2018.02.024
    [16]
    Wang C, Su K, Wan W, et al. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2014,2:5018-5023. doi: 10.1039/C3TA14921H
    [17]
    Song J X, Gordin M L, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angewandte Chemie International Edition,2015,54:4325-4329. doi: 10.1002/anie.201411109
    [18]
    Li Q C, Song Y Z, Xu R Z, et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries[J]. ACS Nano,2018,12:10240-10250. doi: 10.1021/acsnano.8b05246
    [19]
    Guo J C, Yang Z C, Yu Y C, et al. A. Lithium sulfur battery cathode enabled by lithium-nitrile interaction[J]. Journal of the American Chemical Society,2013,135:763-767. doi: 10.1021/ja309435f
    [20]
    Hou T Z, Peng H J, Huang J Q, et al. The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium(poly)sulfides in lithium-sulfur batteries[J]. 2D Materials,2015,2:014011. doi: 10.1088/2053-1583/2/1/014011
    [21]
    Qiu Y C, Li W F, Zhao W, et al. High rate, ultralong cycle life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters,2014,14:4821-4827. doi: 10.1021/nl5020475
    [22]
    Rao D W, Wang Y H, Zhang L Y, et al. Mechanism of polysulfide immobilization on defective graphene sheets with N-substitution[J]. Carbon,2016,110:207-214. doi: 10.1016/j.carbon.2016.09.021
    [23]
    Yang D H, Zhou H Y, Liu H, et al. Hollow N-doped carbon polyhedrons with hierarchically porous shell for confinement of polysulfides in lithium-sulfur batteries[J]. iScience,2019,13:243-253. doi: 10.1016/j.isci.2019.02.019
    [24]
    Wang M Y, Xia X H, Zhou Y, et al. Porous carbon hosts for lithium-sulfur batteries[J]. Chemistry A European Journal,2019,25:3710-3725. doi: 10.1002/chem.201803153
    [25]
    Bai Y, Huang Z H, Zhang Z J, et al. Ultrafine hierarchically porous carbon fibers and their adsorption performance for ethanol and acetone[J]. New Carbon Materials,2019,34:533-538. doi: 10.1016/S1872-5805(19)60029-6
    [26]
    Xue J J, Wu T, Dai Y Q, et al. Electrospinng and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews,2019,119:5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [27]
    Cho C W, Cho D, Ko Y G, et al. Stabilization, carbonization, and characterization of PAN precursor webs processed by electrospinning technique[J]. Carbon Letters,2007,7:313-320.
    [28]
    Yao S, Zhang C, He Y, et al. Functionalization of nitrogen-doped carbon nanofibers with polyamidoamine dendrimer as a freestanding electrode with high sulfur loading for lithium-polysulfides batteries[J]. ACS Sustainable Chemistry & Engineering,2020,8:7815-7824.
    [29]
    Chiochan P, Kosasang S, Ma N, et al. Confining Li2S6 catholyte in 3D graphene sponge with ultrahigh total pore volume and oxygen-containing groups for lithium-sulfur batteries[J]. Carbon,2020,158:244-255. doi: 10.1016/j.carbon.2019.12.015
    [30]
    Zha C, Wu D, Zhao Y, et al. Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries[J]. Journal of Energy Chemistry,2021,52:163-169. doi: 10.1016/j.jechem.2020.04.059
    [31]
    Li M Q, Bi Z H, Xie L J, et al. From starch to carbon materials: insight into the cross-linking reaction and its influence on the carbonization process[J]. ACS Sustainable Chemistry & Engineering,2019,7:14796-14804.
    [32]
    Xie L J, Su F Y, Xie L F, et al. Effect of pore structure and doping species on charge storage mechanism in porous carbon-based supercapacitors[J]. Materials Chemistry Frontiers,2020,4:2610-2634. doi: 10.1039/D0QM00180E
    [33]
    Song N J, Lu C X, Chen C M, et al. Effect of annealing temperature on the mechanical properties of flexible graphene films[J]. New Carbon Materials,2017,32:221-226. doi: 10.1016/S1872-5805(17)60119-7
    [34]
    Liu Q, Xu Y Y, Mu S J, et al. The effect of nitrogen and/boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes[J]. New Carbon Materials, 2014, 29: 309-315.
    [35]
    Ren G Z, Chen C J, Deng L H, et al. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy[J]. New Carbon Materials,2015,30:476-480. doi: 10.1016/S1872-5805(15)60202-5
    [36]
    Zussman E, Chen X, Ding W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J]. Carbon,2005,43:2175-2185. doi: 10.1016/j.carbon.2005.03.031
    [37]
    Liu Y Z, Li Y F, Yuan S X, et al. Synthesis of 3D N, S dual-doped porous carbons with ultrahigh surface areas for highly efficient oxygen reduction reactions[J]. ChemElectroChem,2018,5:3506-3513. doi: 10.1002/celc.201800937
    [38]
    Zhu J D, Chen C, Lu Y, et al. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries[J]. Carbon,2015,94:189-195. doi: 10.1016/j.carbon.2015.06.076
    [39]
    Agend F, Naderi N, Fareghi-Alamdari A. Fabrication and electrical characterization of electrospun polyacrylonitrile-derived carbon nanofibers[J]. Journal of Applied Polymer Science,2007,106:255-259. doi: 10.1002/app.26476
    [40]
    Zhang L F, Aboagye A, Kellar A, et al. A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications[J]. Journal Material Science,2014,49:463-480. doi: 10.1007/s10853-013-7705-y
    [41]
    Edie D D. The effect of processing on the structure and properties of carbon fibers[J]. Carbon,1998,36:345-362. doi: 10.1016/S0008-6223(97)00185-1
    [42]
    Yao S, Tang H, Liu M, et al. TiO2 nanoparticles incorporation in carbon nanofiber as a multi-functional interlayer toward ultralong cycle life lithium sulfur batteries[J]. Journal of Alloys and Compounds,2019,788:639-648. doi: 10.1016/j.jallcom.2019.02.236
    [43]
    Yao S, Guo R, W u, Z Z, et al. Fabrication of Magnéli phase Ti4O7 nanorods as a functional sulfur material host for lithium-sulfur battery cathode[J]. Journal of Electroceramics,2020,44:154-162. doi: 10.1007/s10832-020-00206-7
    [44]
    Zhang C J, He Y P, Wang Y Q, et al. CoFe2O4 nanoparticles loaded N-doped carbon nanofibers networks as electrocatalyst for enhancing redox kinetics in Li-S batteries[J]. Applied Surface Science,2021,560: 149908 doi: 10.1016/j.apsusc.2021.149908
    [45]
    Yao S, Zhang C, Guo R, et al. CoS2-decorated cabalt/nitrogen co-doped carbon nanofiber networks as dual functional electrocatalysts for enhancing electrochemical redox kinetics in lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering,2020, 8: 13600-13609 doi: 10.1021/acssuschemeng.0c02869
    [46]
    Yao S, Zhang C, Xie F, et al. Hybrid membrane with SnS2 nanoplates decorated nitrogen-doped carbon nanofiebrs as binder-free electrodes with ultrahigh sulfur loading for lithium sulfur batteries[J]. ACS Sustainable Chemistry & Engineering,2020,8:2707-2715. doi: 10.1021/acssuschemeng.9b06064
    [47]
    Yao S, Guo R, Xie F, et al. Electrospun three-dimensional cobalt decorated nitrogen doped carbon nanofibers network as freestanding electrode for lithium/sulfur batteries[J]. Electrochimica Acta,2020,337:135765. doi: 10.1016/j.electacta.2020.135765
    [48]
    Wang X W, Zhang Z A, Qu Y H, et al. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries[J]. Journal of Power Sources,2014,256:361-368. doi: 10.1016/j.jpowsour.2014.01.093
    [49]
    Su D W, Cortie M, Wang G X. Fabrication of N-doped graphene-carbon nanotube hybrids from Prussian blue for lithium-sulfur batteries[J]. Advanced Energy Materials,2017,7:1602014. doi: 10.1002/aenm.201602014
    [50]
    Guo D, Wei H, Chen X, et al. 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2017,5:18193-18206. doi: 10.1039/C7TA04728B
    [51]
    Pang Q, Nazar L F. Long-life and high-area-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. ACS Nano,2016,10:4111-4118. doi: 10.1021/acsnano.5b07347
    [52]
    Jin J, Shi Z Q, Wang C Y. Electrochemical performance of electrospun carbon nanofibers as free-standing and binder-free anodes for sodium-ion and lithium-ion batteries[J]. Electrochimica Acta,2014,141:302-310. doi: 10.1016/j.electacta.2014.07.079
    [53]
    Xue S K, Yao S, Jing M, et al. Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries[J]. Electrochimica Acta,2019,299:549-559. doi: 10.1016/j.electacta.2019.01.044
    [54]
    Zhuang R Y, Yao S, Shen X, et al. A freestanding MoO2-decorated carbon nanofibers interlayer for rechargeable lithium sulfur battery[J]. International Journal of Energy Research,2019,43:1111-1120. doi: 10.1002/er.4334
    [55]
    Tang H, Yao S, Xue S, et al. In-situ synthesis of carbon@Ti4O7 non-woven fabric as a multi-functional interlayer for excellent lithium-sulfur battery[J]. Electrochimica Acta,2018,263:158-167. doi: 10.1016/j.electacta.2018.01.066
    [56]
    Tsao Y, Lee M, Miller E, et al. Designing a quinone-based redox redox mediator to facilitate Li2S oxidation in Li-S batteries[J]. Joule,2019,3:872-884. doi: 10.1016/j.joule.2018.12.018
  • 20200100-SI-viedo.wmv
    20200100-SI.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(1245) PDF Downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return