Volume 37 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
REN Xuan-ru, WANG Wei-guang, SUN Ke, HU Yu-wen, XU Lei-hua, FENG Pei-zhong. Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering. New Carbon Mater., 2022, 37(3): 603-614. doi: 10.1016/S1872-5805(21)60060-4
Citation: REN Xuan-ru, WANG Wei-guang, SUN Ke, HU Yu-wen, XU Lei-hua, FENG Pei-zhong. Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering. New Carbon Mater., 2022, 37(3): 603-614. doi: 10.1016/S1872-5805(21)60060-4

Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering

doi: 10.1016/S1872-5805(21)60060-4
Funds:  The Fundamental Research Funds for the Central Universities (2018GF14)
More Information
  • Author Bio:

    任宣儒, 副教授. E-mail:XuanruRen@163.com

  • Corresponding author: XU Lei-hua, Associate Professor. E-mail: xuleihua@cumt.edu.cn
  • Received Date: 2020-03-19
  • Rev Recd Date: 2020-05-21
  • Available Online: 2021-04-28
  • Publish Date: 2022-06-01
  • Liquid-phase sintering combining an in-situ reaction method with a slurry method was used to prepare HfB2-MoSi2-SiC coatings of controllable composition and thickness. The effect of the MoSi2 content on the oxidation protection of HfB2-MoSi2-SiC composite coatings in a dynamic aerobic environment from room temperature to 1500 °C and a static constant temperature at 1500 °C in air was investigated. The relative oxygen permeability was used to characterize the oxidation resistance of the coatings. The results of dynamic oxidation test at room temperature~1500 °C show that the initial oxidation weight loss temperature of the samples is increased from 775 to 821 °C, and the maximum weight loss rate is decreased from 0.9×10−3 to 0.2×10−3 mg·cm−2·s−1 with increasing MoSi2 content, the lowest relative oxygen permeability is reduced to 12.2% with the weight loss of the sample being decreased from 1.8% to 0.21%. The mechanism of MoSi2 improving the oxidation protection of the coatings is revealed. With an increase of the MoSi2 content, the amount of SiO2 glass phase in the coating is increased, and the dispersion of Hf-oxide on the surface is improved so that a Hf-Si-O glass layer with high stability is formed and the weight loss of the sample is reduced from 0.46% to 0.08% after 200 h oxidation at 1500 °C in air.
  • loading
  • [1]
    Li H J, Chen M M, Yao X Y, et al. Status and prospect of self-healing for carbon/carbon composites research[J]. Journal of the Chinese Ceramic Society,2018,46(01):142-149.
    [2]
    Silvestroni L, Guicciardi S, Melandri C, et al. TaB2-based ceramics: Microstructure, mechanical properties and oxidation resistance[J]. Journal of the European Ceramic Society,2012,32:97-105. doi: 10.1016/j.jeurceramsoc.2011.07.032
    [3]
    Huang M, Li K Z, Li H J, et al. Yttrium silicate coatings for SiC coated C/C composites prepared by atmospheric plasma spraying[J]. New Carbon Materials,2010,25(3):187-191.
    [4]
    Silvestroni L, Bellosi A, Melandri C, et al. Microstructure and properties of HfC and TaC-based ceramics obtained by ultrafifine powder[J]. Journal of the European Ceramic Society,2011,31:619-27. doi: 10.1016/j.jeurceramsoc.2010.10.036
    [5]
    Liu Y, Fu Q G, Zhao F L, et al. Internal friction vs. thermal shock in C/C composites[J]. Part B-Engineering,2016,106:59-65. doi: 10.1016/j.compositesb.2016.06.078
    [6]
    Zhang Y L, Hu H, Zhang P F, et al. SiC/ZrB2-SiC-ZrC multilayer coating for carbon/carbon composites against ablation[J]. Surface & Coatings Technology,2016,300:1-9. doi: 10.1016/j.surfcoat.2016.05.028
    [7]
    Corral E, Walker L. Improved ablation resistance of C-C composites using zirconium diboride and boron carbide[J]. Journal of the European Ceramic Society,2010,30:2357-2364. doi: 10.1016/j.jeurceramsoc.2010.02.025
    [8]
    Liu T Y, Fu Q G, Cheng C Y. Effects of particle impacting on ablation property of C/C-ZrC-SiC composites via injection method[J]. Equipment Environmental Engineering,2019,16(10):8-15.
    [9]
    Zhou L, Huang J F, Cao L Y, et al. A novel design of oxidation protective β-Y2Si2O7 nanowire toughened Y2SiO5/Y2O3-Al2O3-SiO2 glass ceramic coating for SiC coated carbon/carbon composites[J]. Corrosion Science,2018(135):233-242.
    [10]
    Li H J, Shi X H, Shen Q Q, et al. Research and development of C/C composites in China[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):2142-2154.
    [11]
    Jortenr J, Priya N S. Applications of carbon/carbon composites[J]. Comprehensive Composite Materials II,2018,5:421-436.
    [12]
    Peng Z, Sun W, Xiong X, et al. Microstructure characteristics and ablation behavior of an Al1.92Cr0.08O3-SiC-ZrC anti-ablation coating[J]. New Carbon Materials,2019,34(5):464-471.
    [13]
    Mi Q, Cao L Y, Huang J Q F, et al. Research progress in matrix oxidation-resistance modification of carbon/carbon composites[J]. Ordnance Material Science and Engineering,2010,33(02):98-103.
    [14]
    Dietrich S, Gebert J M, Stasiuk G, et al. Microstructure characterization of CVI-densified carbon/carbon composites with various fiber distributions[J]. Composites Science Technology,2012(72):1892-1900.
    [15]
    Zhang J P, Fu Q G, Qu J L, et al. Blasting treatment and chemical vapor deposition of SiC nanowires to enhance the thermal shock resistance of SiC coating for carbon/carbon composites in combustion environment[J]. Journal of Alloys and Compounds,2016(666):77-83.
    [16]
    Li Z Q, Li H J, Cao C W, et al. Investigation on ablation characteristics of C/C composites with ZrC/SiC coating[J]. Journal of Solid Rocket Technology,2011,34(1):105-108.
    [17]
    Li S P, Zhang M Y, Huang D, et al. Preparation and antioxidation property of a SiC-MoSi2-Si multilayer coating on a C/C composite[J]. New Carbon Materials,2018,33(1):82-87.
    [18]
    Venugopal S, Paul A, Vaidhyanathan B, et al. Synthesis and spark plasma sintering of submicron HfB2: Effect of various carbon sources[J]. Journal of the European Ceramic Society,2014(34):1471-1479.
    [19]
    Silvestroni L, Sciti D. Densification of ZrB2-TaSi2 and HfB2-TaSi2 ultra-high-temperature ceramic composites[J]. Journal of the American Ceramic Society,2011(94):1920-1930.
    [20]
    Talmy I G, Zaykoski J A, Opeka M M. Synthesis, processing and properties of TaC-TaB2-C ceramics[J]. Journal of the European Ceramic Society,2010(30):2253-2256.
    [21]
    Ren J C, Zhang Y L, Zhang P F, et al. Ablation resistance of HfC coating reinforced by HfC nanowires in cyclic ablation environment[J]. Journal of the European Ceramic Society,2017(37):2759-2768.
    [22]
    Ren X R, Li H J, Chu Y H, et al. Ultra-high temperature ceramic HfB2-SiC coating for oxidation protection of SiC-coated carbon/carbon composites[J]. International Journal of Applied Ceramic Technology,2015,12(3):560-567. doi: 10.1111/ijac.12241
    [23]
    Wang P P, Li H J, Yuan R M, et al. The oxidation resistance of two-temperature synthetic HfB2-SiC coating for the SiC coated C/C composites[J]. Journal of Alloys and Compounds,2018,747:438-446. doi: 10.1016/j.jallcom.2018.03.043
    [24]
    Jiang Y, Liu T Y, Ru H Q, et al. Oxidation and ablation protection of double layer HfB2-SiC-Si/SiC-Si coating for graphite materials[J]. Journal of Alloys and Compounds,2019,782:761-771. doi: 10.1016/j.jallcom.2018.12.256
    [25]
    Wang T Y, Luo R Y. Oxidation protection and mechanism of the HfB2-SiC-Si/SiC coatings modified by in-situ strengthening of SiC whiskers for C/C composites[J]. Ceramics International,2018,44(11):12370-12380. doi: 10.1016/j.ceramint.2018.04.025
    [26]
    Simonenko E P, Simonenko N P, Gordeev A N, et al. Behavior of HfB2-30vol% SiC UHTC obtained by sol-gel approach in the supersonic airflow[J]. Journal of Sol-Gel Science and Technology,2019,92(2):386-397. doi: 10.1007/s10971-019-05029-9
    [27]
    Wang P P, Li H J, Kong J A, et al. A WSi2-HfB2-SiC coating for ultralong-time anti-oxidation at 1973K[J]. Corrosion Science,2019,159:108-119.
    [28]
    Zhang J P, Fu Q G, Tong M D, et al. Microstructure, ablation behavior and thermal retardant ability of C/C-HfB2 composites prepared by precursor infiltration pyrolysis combined with chemical vapor infiltration[J]. Journal of Alloys and Compounds,2018,742:123-129. doi: 10.1016/j.jallcom.2018.01.284
    [29]
    Zhang J P, Qu J L, Fu Q G, et al. Ablation behavior of nose-shaped HfB2-SiC modified carbon/carbon composites exposed to oxyacetylene torch[J]. Corrosion Science,2019,151:87-96. doi: 10.1016/j.corsci.2019.02.015
    [30]
    Sun J, Fu Q G, Guo L P, et al. Effect of filler on the oxidation protective ability of MoSi2 coating for Mo substrate by halide activated pack cementation[J]. Materials & Design,2016(92):602-609.
    [31]
    Wang L X, Fu Q G, Zhao F L. Improving oxidation resistance of MoSi2 coating by reinforced with Al2O3 whiskers[J]. Intermetallics,2018(940):106-113.
    [32]
    Fu Q Gg, Xue H, Li H J, et al. Anti-oxidation property of a multi-layer coating for carbon/carbon composites in a wind tunnel at 1500 °C[J]. New Carbon Materials,2010,25(4):279-284. doi: 10.1016/S1872-5805(09)60033-0
    [33]
    Zhang Y L, Li H J, Hu Z X, et al. C/SiC/MoSi2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites[J]. Transactions of Nonferrous Metals Society of China,2013(7):2118-2122.
    [34]
    Zhu L, Zhu Y S, Ren X R, et al. Microstructure, properties and oxidation behavior of MoSi2-MoB-ZrO2 coating for Mo substrate using spark plasma sintering[J]. Surface & Coatings Technology,2019,375:773.
    [35]
    Chen P, Zhu L, Ren X R, et al. Preparation of oxidation protective MoSi2-SiC coating on graphite using recycled waste MoSi2 by one-step spark plasma sintering method[J]. Ceramics International,2019:22040-22046.
    [36]
    Chen P, Zhu L, Ren X R, et al. Recycling Waste MoSi2 Heating elements to fabricated MoSi2-based anti-oxidation coatings[J]. Equipment Environmental Engineering,2019,16(10):55-58.
    [37]
    Zhang Y L, Li H J, Hu Z X, et al. C/SiC/MoSi2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites[J]. Transactions of Nonferrous Metals Society of China,2013,23:2118-2122. doi: 10.1016/S1003-6326(13)62705-3
    [38]
    Jiang Y, Ye C C, Ru H Q, et al. Oxidation protective MoSi2-SiC-Si coating for graphite materials prepared by slurry dipping and vapor silicon infiltration[J]. Ceramics International,2018,44:5171-5178. doi: 10.1016/j.ceramint.2017.12.122
    [39]
    Li H J, Xue H, Wang Y J, et al. A MoSi2-SiC-Si oxidation protective coating for carbon/carbon composites[J]. Surface and Coatings Technology,2007,201:9444-9447. doi: 10.1016/j.surfcoat.2007.03.013
    [40]
    Wang P P, Li H J, Ren X R, et al. HfB2-SiC-MoSi2 oxidation resistance coating fabricated through in-situ synthesis for SiC coated C/C composites[J]. Journal of Alloys and Compounds,2017,722:69-76. doi: 10.1016/j.jallcom.2017.06.008
    [41]
    Ren X R, Li H J, Fu Q G, et al. TaB2-SiC-Si multiphase oxidation protective coating for SiC-coated carbon/carbon composites[J]. Journal of the European Ceramic Society,2013(15-16):2953-2959.
    [42]
    Yao D J, Li H J, Liu L, et al. HfB2 prepared by sol-gel method and its oxidation behavior[J]. Rare Metal Materials and Engineering,2013,42(12):2594-2597.
    [43]
    Silvestroni L, Meriggi G, Sciti D, et al. Oxidation behavior of ZrB2 composites doped with various transition metal silicides[J]. Corrosion Science,2014,83:281-291. doi: 10.1016/j.corsci.2014.02.026
    [44]
    Wang P P, Li H J, Sun J, et al. The effect of HfB2 content on the oxidation and thermal shock resistance of SiC coating[J]. Surface and Coatings Technology,2018,339:124-131. doi: 10.1016/j.surfcoat.2018.02.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article Views(750) PDF Downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return