Volume 36 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
LI Shi-jie, ZHANG Ming-yang, GAO Yan, LI Hui, WANG Qian, ZHANG Lin-hua. Preparation of a porous carbon from Enteromorpha prolifera with excellent electrochemical properties. New Carbon Mater., 2021, 36(6): 1158-1168. doi: 10.1016/S1872-5805(21)60068-9
Citation: LI Shi-jie, ZHANG Ming-yang, GAO Yan, LI Hui, WANG Qian, ZHANG Lin-hua. Preparation of a porous carbon from Enteromorpha prolifera with excellent electrochemical properties. New Carbon Mater., 2021, 36(6): 1158-1168. doi: 10.1016/S1872-5805(21)60068-9

Preparation of a porous carbon from Enteromorpha prolifera with excellent electrochemical properties

doi: 10.1016/S1872-5805(21)60068-9
Funds:  This study was supported by the Doctoral Fund of Shandong Jianzhu University (XNBS1838)
More Information
  • Corresponding author: LI Shi-jie, Ph.D, Lecturer. E-mail: lishijie18@sdjzu.edu.cn
  • Received Date: 2020-04-10
  • Rev Recd Date: 2020-06-01
  • Available Online: 2021-08-10
  • Publish Date: 2021-12-01
  • Enteromorpha prolifera (EP) was carbonized, treated by HCl pickling to remove Ca2+ ions to form an "egg-box" structure, and activated by KOH to obtain a porous carbon (PC). The porous texture and electrochemical performance of the PC were compared with one produced without the HCl pickling stage. Results indicate that the HCl treatment leads to the formation of a porous structure with a high specific surface area (SBET), up to 3 283 m2 g−1, with more than 66% of the surface area contributed by mesopores, while the carbon prepared without HCl treatment is microporous. The PC with the HCl treatment had an excellent electrochemical performance when used as the electrode material of a supercapacitor even at high current densities. Its gravimetric capacitance reached 361 F g−1 at a current density of 0.1 A g−1, and the capacitance remained at 323 F g−1 at a current density of 10 A g−1, both of which are higher than obtained using the PC without HCl treatment.
  • loading
  • [1]
    Mao L, Li Y, Chi C Y, et al. Conjugated polyfluorene imidazolium ionic liquids intercalated reduced graphene oxide for high performance supercapacitor electrodes[J]. Nano Energy,2014,6:119-128. doi: 10.1016/j.nanoen.2014.03.018
    [2]
    Wang G M, Wang H Y, Lu X H, et al. Solid-State supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Adv Mater,2014,26:2676-2682. doi: 10.1002/adma.201304756
    [3]
    Westover A S, Tian J W, Bernath S, et al. A multifunctional load-bearing solid-state supercapacitor[J]. Nano Lett,2014,14:3197-3202. doi: 10.1021/nl500531r
    [4]
    Bai X X, Hu X J, Zhou S Y, et al. In situ polymerization and characterization of grafted poly (3, 4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite with high electrochemical performances[J]. Electrochimica Acta,2013,87:394-400. doi: 10.1016/j.electacta.2012.09.079
    [5]
    Chen H, Guo Y C, Wang F, et al. An activated carbon derived from tobacco waste for use as a supercapacitor electrode material[J]. New Carbon Mater,2017,32:592-599. doi: 10.1016/S1872-5805(17)60140-9
    [6]
    KS Lee, MS Park, JD Kim. Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes[J]. Colloids Surf, A,2017,533:323-329.
    [7]
    Jin H, Wang X M, Gu Z R, et al. A facile method for preparing nitrogen-doped graphene and its application in supercapacitors[J]. J Power Sources,2015,273:1156-1162. doi: 10.1016/j.jpowsour.2014.10.010
    [8]
    Sharma R, Manzie C, Bessede M, et al. Conventional, hybrid and electric vehicles for Australian driving conditions -Part 1: Technical and financial analysis[J]. Transport Res C,2012,25:238-249. doi: 10.1016/j.trc.2012.06.003
    [9]
    Sun K, Leng C Y, Jian-Chun J, et al. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance[J]. New Carbon Mater,2017,32:451-459. doi: 10.1016/S1872-5805(17)60134-3
    [10]
    Volperts A, Dobele G, Zhurinsh A, et al. Wood based activated carbons for supercapacitor electrodes with sulfuric acid electrolyte[J]. New Carbon Mater,2017,32:319-326. doi: 10.1016/S1872-5805(17)60125-2
    [11]
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat Mater,2008,7:845-854. doi: 10.1038/nmat2297
    [12]
    Tao Y, Xie X Y, Lv W, et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors[J]. Sci Rep,2013,3:2975. doi: 10.1038/srep02975
    [13]
    Barzegar F, Bello A, Dangbegnon J K, et al. Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability[J]. Appl Energy,2017,207:417-426. doi: 10.1016/j.apenergy.2017.05.110
    [14]
    Fujishige M, Yoshida I, Toya Y, et al. Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material[J]. J Environ Chem Eng,2017,5:1801-1808. doi: 10.1016/j.jece.2017.03.011
    [15]
    Liu H J, Cui W J, Jin L H, et al. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors[J]. J Mater Chem,2009,19:3661-3667. doi: 10.1039/b819820a
    [16]
    Xiao Y, Long C, Zheng M T, et al. High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors[J]. Chin Chem Lett,2014,25:865-868. doi: 10.1016/j.cclet.2014.05.004
    [17]
    Kleszyk P, Ratajczak P, Skowron P, et al. Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors[J]. Carbon,2015,81:148-157. doi: 10.1016/j.carbon.2014.09.043
    [18]
    Abioye A M, Ani F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review[J]. Renew Sust Energ Rev,2015,52:1282-1293. doi: 10.1016/j.rser.2015.07.129
    [19]
    Farma R, Deraman M, Awitdrus A, et al. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors[J]. Bioresour Technol,2013,132:254-261. doi: 10.1016/j.biortech.2013.01.044
    [20]
    Wang G M, Ling Y C, Qian F, et al. Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes[J]. J Power Sources,2011,196:5209-5214. doi: 10.1016/j.jpowsour.2011.02.019
    [21]
    Kang D M, Liu Q L, Gu J J, et al. “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano,2015,9:11225-11233. doi: 10.1021/acsnano.5b04821
    [22]
    Jurewicz K, Babel K. Efficient capacitor materials from active carbons based on coconut shell/melamine precursors[J]. Energy Fuels,2010,24:3429-3435. doi: 10.1021/ef901554j
    [23]
    Balathanigaimani M S, Shim W G, Lee M J, et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J]. Electrochem Commun,2008,10:868-871. doi: 10.1016/j.elecom.2008.04.003
    [24]
    Li X L, Han C L, Chen X Y, et al. Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes[J]. Microporous Mesoporous Mater,2010,131:303-309. doi: 10.1016/j.micromeso.2010.01.007
    [25]
    Zhao S, Wang C Y, Chen M M, et al. Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor[J]. J Phys Chem Solids,2009,70:1256-1260. doi: 10.1016/j.jpcs.2009.07.004
    [26]
    Chen H B, Wang H B, Yang L F, et al. High specific surface area rice hull based porous carbon prepared for EDLCs[J]. Int J Electrochem Sci,2012,7:4889-4897.
    [27]
    Li X A, Xing W, Zhuo S P, et al. Preparation of capacitor’s electrode from sunflower seed shell[J]. Bioresour. Technol.,2011,102:1118-1123. doi: 10.1016/j.biortech.2010.08.110
    [28]
    He J J, Zhang D Y, Wang Y L, et al. Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability[J]. Appl Surf Sci,2020,515
    [29]
    Qiu Y C, Zhang X F, Yang S H. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets[J]. Phys Chem Chem Phys,2011,13:12554-12558. doi: 10.1039/c1cp21148j
    [30]
    Nolan M, Long R, English N J, et al. Hybrid density functional theory description of N- and C-doping of NiO[J]. J Chem Phys,2011,134:735.
    [31]
    Sarhan A, Nakanishi H, Dino W A, et al. Oxygen vacancy effects on electronic structure of Pt/NiO/Pt capacitor-like system[J]. Surf Sci,2012,606:239-246. doi: 10.1016/j.susc.2011.09.022
    [32]
    Wang D W, Li F, Fang H T, et al. Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport[J]. J Phys Chem B,2006,110:8570-8575. doi: 10.1021/jp0572683
    [33]
    Li S J, Han K H, Si P C, et al. High-performance activated carbons prepared by KOH activation of gulfweed for supercapacitors[J]. Int J Electrochem Sci,2018,13:1728-1743.
    [34]
    Cuong D V, Wu P C, Liu N L, et al. Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions[J]. Sep Purif Technol,2020,242
    [35]
    Zheng H J, Yu A M, Ma C A. Effect of pore characteristics on electrochemical capacitance of activated carbons[J]. Russ J Electrochem,2012,48:1179-1186. doi: 10.1134/S102319351205014X
    [36]
    Rychagov A Y, Urisson N A, Vol'Fkovich Y M. Electrochemical characteristics and properties of the surface of activated carbon electrodes in a double-layer capacitor[J]. Russ J Electrochem,2001,37:1172-1179. doi: 10.1023/A:1012715615873
    [37]
    Chen W C, Wen T C, Teng H. Polyaniline-deposited porous carbon electrode for supercapacitor[J]. Electrochim Acta,2003,48:641-649. doi: 10.1016/S0013-4686(02)00734-X
    [38]
    Huang Q H, Wang X Y, Li J, et al. Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors[J]. J Power Sources,2007,164:425-429. doi: 10.1016/j.jpowsour.2006.09.066
    [39]
    Kim I H, Kim J H, Cho B W, et al. Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications[J]. J Electrochem Soc,2006,153:1451-1458. doi: 10.1149/1.2203936
    [40]
    Fang B, Wei Y Z, Kumagai M. Modified carbon materials for high-rate EDLCs application[J]. J Power Sources,2006,155:487-491. doi: 10.1016/j.jpowsour.2005.04.012
    [41]
    Kim C H, Pyun S I, Shin H C. Kinetics of double-layer charging/discharging of activated carbon electrodes: Role of surface acidic functional groups[J]. J Electrochem Soc,2002,149:93-98.
    [42]
    Tongpoothorn W, Sriuttha M, Homchan P, et al. Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties[J]. Chem Eng Res Des,2011,89:335-340. doi: 10.1016/j.cherd.2010.06.012
    [43]
    Bedin K C, Martins A C, Cazetta A L, et al. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal[J]. Chem Eng J,2016,286:476-484. doi: 10.1016/j.cej.2015.10.099
    [44]
    Gomez-Serrano V, Pastor-Villegas J, Perez-Florindo A, et al. FT-IR study of rockrose and char and activated carbon[J]. J Anal Appl Pyrolysis,1996,36:71-80. doi: 10.1016/0165-2370(95)00921-3
    [45]
    EI-Hendawy A N A. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions[J]. J Anal Appl Pyrolysis,2006,75:159-166. doi: 10.1016/j.jaap.2005.05.004
    [46]
    Dong X C, Wang X W, Wang L, et al. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode[J]. Carbon,2012,50:4865-4870. doi: 10.1016/j.carbon.2012.06.014
    [47]
    Zhou H, Lv B L, Xu Y, et al. Synthesis and electrochemical properties of NiO nanospindles[J]. Mater Res Bull,2014,50:399-404. doi: 10.1016/j.materresbull.2013.11.004
    [48]
    Pawar S M, Inamdar A I, Gurav K V, et al. Effect of oxidant on the structural, morphological and supercapacitive properties of nickel hydroxide nanoflakes electrode films[J]. Mater Lett,2015,141:336-339. doi: 10.1016/j.matlet.2014.11.133
    [49]
    Sun H Y, Liu S W, Lu Q F, et al. Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor[J]. Mater Lett,2014,128:136-139. doi: 10.1016/j.matlet.2014.04.134
    [50]
    Qu D, Zheng M, Zhang L, et al. CORRIGENDUM: Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J]. Sci Rep,2014,4:5294. doi: 10.1038/srep05294
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article Views(5281) PDF Downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return