Volume 36 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
LI Hao-liang, WU Xian, CHENG Kui, ZHU Mo-han, WANG Liu-si, YU Hong-liu, YANG Jun-he. One-pot modified “grafting-welding” preparation of graphene/ polyimide carbon films for superior thermal management. New Carbon Mater., 2021, 36(5): 949-960. doi: 10.1016/S1872-5805(21)60076-8
Citation: LI Hao-liang, WU Xian, CHENG Kui, ZHU Mo-han, WANG Liu-si, YU Hong-liu, YANG Jun-he. One-pot modified “grafting-welding” preparation of graphene/ polyimide carbon films for superior thermal management. New Carbon Mater., 2021, 36(5): 949-960. doi: 10.1016/S1872-5805(21)60076-8

One-pot modified “grafting-welding” preparation of graphene/ polyimide carbon films for superior thermal management

doi: 10.1016/S1872-5805(21)60076-8
Funds:  The authors are thankful to Shanghai Sailing Program (20YF1432100), Shanghai Scientific and Technological Innovation Project (19JC1410400) and Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-07-E00015) for their financial supports to this study
More Information
  • Author Bio:

    李昊亮,博士,博士后. E-mail:lihl1989@outlook.com

  • Corresponding author: YANG Jun-he, Professor. E-mail: jhyang@usst.edu.cn
  • Received Date: 2020-10-30
  • Rev Recd Date: 2021-03-22
  • Available Online: 2021-08-31
  • Publish Date: 2021-10-01
  • Thermal management has attracted much recent attention due to the rapid development of 5G communication and electronic devices. Reduced GO/polyimide carbon (rGO/PI-carbon) films were prepared by a one-pot“grafting-welding” strategy, where GO was first grafted with amino groups using 1,3-bis(4-aminophenoxy) benzene, then polymerized with polyamic acid (PAA) and pyromellitic dianhydride to connect the GO sheets, before carbonization and graphitization. The rGO/PI film with a mass ratio of GO to PAA of 7% exhibits an increase in in-plane thermal conductivity (1 102 W(m·K)−1) of 48.92% compared with the rGO film. It also has a superior bending performance and survives 2 000 bend cycles with a small radius test while suffering an electrical resistance increase of less than 10%. Grafting-welding of rGO with PI carbon produces effective paths for phonon transport between the graphene sheets, reducing phonon scattering, which makes it a candidate for thermal interface materials for heat dissipation.
  • loading
  • [1]
    Balandin A A. Phononics of graphene and related materials[J]. ACS Nano,2020,14(5):5170. doi: 10.1021/acsnano.0c02718
    [2]
    Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,10(8):569-581. doi: 10.1038/nmat3064
    [3]
    Hishiyama Y, Yoshida A, Kaburagi Y, et al. Graphite films prepared from carbonized polyimide films[J]. Carbon,1992,30(3):333-337. doi: 10.1016/0008-6223(92)90027-T
    [4]
    Venkatachalam S, Depriester M, Sahraoui A H, et al. Thermal conductivity of Kapton-derived carbon[J]. Carbon,2017,114:134-140. doi: 10.1016/j.carbon.2016.11.072
    [5]
    Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [6]
    Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters,2006,6(1):96-100. doi: 10.1021/nl052145f
    [7]
    Ding J, Zhao H, Wang Q, et al. An ultrahigh thermal conductive graphene flexible paper[J]. Nanoscale,2017,9(43):16871-16878. doi: 10.1039/C7NR06667H
    [8]
    Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials,2014,26(26):4521-4526. doi: 10.1002/adma.201400951
    [9]
    Huang Y, Gong Q, Zhang Q, et al. Fabrication and molecular dynamics analyses of highly thermal conductive reduced graphene oxide films at ultra-high temperatures[J]. Nanoscale,2017,9(6):2340-2347. doi: 10.1039/C6NR06653D
    [10]
    Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials,2014,24(28):4542-4548. doi: 10.1002/adfm.201400079
    [11]
    Wang B, Cunning B V, Kim N Y, et al. Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order[J]. Advanced Materials,2019,31(29):e1903039. doi: 10.1002/adma.201903039
    [12]
    Teng C, Xie D, Wang J, et al. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene[J]. Advanced Functional Materials,2017,27(20):1700240. doi: 10.1002/adfm.201700240
    [13]
    Xu J, Dai S, Li H, et al. Molecular dynamics simulation of the thermal conductivity of graphitized graphene/polyimide films[J]. New Carbon Materials,2018,33(3):213-220. doi: 10.1016/S1872-5805(18)60336-1
    [14]
    Kumar P, Shahzad F, Yu S, et al. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness[J]. Carbon,2015,94:494-500. doi: 10.1016/j.carbon.2015.07.032
    [15]
    Xu X, Pereira L F, Wang Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communication,2014,5:3689. doi: 10.1038/ncomms4689
    [16]
    Nika D L, Balandin A A. Two-dimensional phonon transport in graphene[J]. Journal of Physic: Condensed Matter,2012,24(23):233203. doi: 10.1088/0953-8984/24/23/233203
    [17]
    Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials,2017,29(27):1700589. doi: 10.1002/adma.201700589
    [18]
    Li H, Dai S, Miao J, et al. Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy[J]. Carbon,2018,126:319-327. doi: 10.1016/j.carbon.2017.10.044
    [19]
    Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon,2006,44(15):3342-3347. doi: 10.1016/j.carbon.2006.06.004
    [20]
    Chua C K, Pumera M. Covalent chemistry on graphene[J]. Chemical Social Review,2013,42(8):3222-3233. doi: 10.1039/c2cs35474h
    [21]
    Song X, Zambare R S, Qi S, et al. Charge-gated ion transport through polyelectrolyte intercalated amine reduced graphene oxide membranes[J]. ACS Applied Materials Interfaces,2017,9(47):41482-41495. doi: 10.1021/acsami.7b13724
    [22]
    Huang T, Lu R, Su C, et al. Chemically modified graphenepolyimide composite films based on utilization of covalent bonding and oriented distribution[J]. ACS Applied Materials Interfaces,2012,4(5):2699-2708. doi: 10.1021/am3003439
    [23]
    Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339. doi: 10.1021/ja01539a017
    [24]
    Li H, Wu X, Cheng K, et al. Preparation of graphene oxide with large lateral size and graphene/polyimide hybrid film via in situ “molecular welding” strategy[J]. Materials Letters,2019,237:168-171. doi: 10.1016/j.matlet.2018.11.096
    [25]
    Qian Y, Zhou C, Huang A. Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes[J]. Carbon,2018,136:28-37. doi: 10.1016/j.carbon.2018.04.062
    [26]
    Zhang Y, Tan M C. Programmable light-activated gradient materials based on graphene-polymer composites[J]. Advanced Materials Interfaces,2018,5(7):1701374. doi: 10.1002/admi.201701374
    [27]
    Ma T, Gao H L, Cong H P, et al. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers[J]. Advanced Materials,2018,30(15):e1706435. doi: 10.1002/adma.201706435
    [28]
    Renteria J D, Ramirez S, Malekpour H, et al. Strongly anisotropic thermal conductivity of free‐standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials,2015,25(29):4664-4672. doi: 10.1002/adfm.201501429
    [29]
    Nika D L, Pokatilov E P, Askerov A S, et al. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering[J]. Physical Review B,2009,79(15):155413. doi: 10.1103/PhysRevB.79.155413
    [30]
    Li M, Li Z, Liu C, et al. Amino-modification and successive electrochemical reduction of graphene oxide for highly sensitive electrochemical detection of trace Pb2+[J]. Carbon,2016,109:479-486. doi: 10.1016/j.carbon.2016.08.054
    [31]
    Pandey R P, Thakur A K, Shahi V K. Sulfonated polyimide/acid-functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties[J]. ACS Applied Materials Interfaces,2014,6(19):16993-17002. doi: 10.1021/am504597a
    [32]
    Roy S, Tang X, Das T, et al. Enhanced molecular level dispersion and interface bonding at low loading of modified graphene oxide to fabricate super nylon 12 composites[J]. ACS Applied Materials Interfaces,2015,7(5):3142-3451.
    [33]
    Zhuang Y, Seong J G, Lee Y M. Polyimides containing aliphatic/alicyclic segments in the main chains[J]. Progress in Polymer Science,2019,92:35-88. doi: 10.1016/j.progpolymsci.2019.01.004
    [34]
    Li F, Peng H, Xia D, et al. Highly sensitive, selective, and flexible NO2 chemiresistors based on multilevel structured three-dimensional reduced graphene oxide fiber scaffold modified with aminoanthroquinone moieties and Ag nanoparticles[J]. ACS Applied Materials Interfaces,2019,11(9):9309-9316. doi: 10.1021/acsami.8b20462
    [35]
    Li D, Zhang B, Zhu C, et al. In-situ growing D-A polymer from the surface of reduced graphene oxide: Synthesis and nonvolatile ternary memory effect[J]. Carbon,2019,143:851-858. doi: 10.1016/j.carbon.2018.11.083
    [36]
    Dresselhaus M S, Jorio A, Hofmann M, et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Letters,2010,10(3):751-758. doi: 10.1021/nl904286r
    [37]
    Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8(4):235-246. doi: 10.1038/nnano.2013.46
    [38]
    Cancado L G, Takai K, Enoki T, et al. General equation for the determination of the crystallite size L-a of nanographite by Raman spectroscopy[J]. Applied Physics Letters,2006,88(16):163106. doi: 10.1063/1.2196057
    [39]
    Cançado L G, Takai K, Enoki T, et al. Measuring the degree of stacking order in graphite by Raman spectroscopy[J]. Carbon,2008,46(2):272-275. doi: 10.1016/j.carbon.2007.11.015
    [40]
    Malard L M, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene[J]. Physics Reports,2009,473(5-6):51-87. doi: 10.1016/j.physrep.2009.02.003
    [41]
    Song N J, Chen C M, Lu C, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders[J]. Journal of Material Chemistry A,2014,2(39):16563-16568. doi: 10.1039/C4TA02693D
    [42]
    Wu Z, Ban F, Boyd R J. Modeling the reaction mechanisms of the amidehydrolysis in an N-(o-Carboxybenzoyl)-l-amino acid[J]. Journal of the American Chemical Society,2003,125(23):6994-7000. doi: 10.1021/ja021329i
    [43]
    Liu K, Qi H, Dong R, et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers[J]. Nature Chemistry,2019,11(11):994-1000. doi: 10.1038/s41557-019-0327-5
    [44]
    Wu Z, Ban F, Boyd R J. Modeling the reaction mechanisms of the imide formation in an N-(o-Carboxybenzoyl)-l-amino acid[J]. Journal of the American Chemical Society,2003,125(12):3642-3648. doi: 10.1021/ja020700z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(765) PDF Downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return