Volume 36 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
HU You-ren, DONG Xiao-ling, HOU Lu, ZHUANG Hong-kun, LI Wen-cui. Electrochemical oxidation of 2D B, N-codoped carbon nanosheets to improve their pseudo-capacitance. New Carbon Mater., 2021, 36(6): 1109-1117. doi: 10.1016/S1872-5805(21)60084-7
Citation: HU You-ren, DONG Xiao-ling, HOU Lu, ZHUANG Hong-kun, LI Wen-cui. Electrochemical oxidation of 2D B, N-codoped carbon nanosheets to improve their pseudo-capacitance. New Carbon Mater., 2021, 36(6): 1109-1117. doi: 10.1016/S1872-5805(21)60084-7

Electrochemical oxidation of 2D B, N-codoped carbon nanosheets to improve their pseudo-capacitance

doi: 10.1016/S1872-5805(21)60084-7
Funds:  National Natural Science Foundation of China (222075038, 21875028); Liao Ning Revitalization Talents Program (XLYC1902045).
More Information
  • Corresponding author: LI Wen-cui, Professor. E-mail: wencuili@dlut.edu.cn
  • Received Date: 2021-06-04
  • Rev Recd Date: 2021-06-28
  • Available Online: 2021-07-16
  • Publish Date: 2021-12-01
  • Introducing redox pseudocapacitance could effectively improve the specific capacitance of carbon-based electrode materials, and is a promising way to overcome the low energy density of carbon-based supercapacitors. An in-situ electrochemical oxidation method was used to electrochemically generate active oxygen-containing functional groups for B, N co-doped carbon nanosheets to significantly increase the pseudocapacitance. Results show that the degree of oxidation, the pseudocapacitance, and the charge transfer rate of the oxidized carbon nanosheets were effectively increased by co-doping with B and N. Compared with the constant potential oxidation method, the cyclic voltammetry oxidation method was more effective in increasing the total oxygen content of the oxidized electrode and to selectively generate electrochemically active quinone groups. The oxidized electrode had a high specific capacitance of 601.5 F g−1 at a current density of 1 A g−1, retaining 74.8% of the original value at 20 A g−1, revealing a favorable rate capability. The oxidized electrode also had excellent cycle stability, retaining 92.6% of the initial capacitance after 8 000 cycles at 5 A g−1.
  • loading
  • [1]
    Choudhary N, Li C, Moore J, Nagaiah N, et al. Asymmetric supercapacitor electrodes and devices[J]. Advanced Materials,2017,29(21):1605336. doi: 10.1002/adma.201605336
    [2]
    Raza W, Ali F Z, Raza N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy,2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013
    [3]
    Nomura K, Nishihara H, Kobayashi N, et al. 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls[J]. Energy & Environmental Science,2019,12(5):1542-1549.
    [4]
    Borenstein A, Hanna O, Attias R, et al. Carbon-based composite materials for supercapacitor electrodes: a review[J]. Journal of Materials Chemistry A,2017,5(25):12653-12672. doi: 10.1039/C7TA00863E
    [5]
    Chen X L, Paul R, Dai L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review,2017,4(3):453-489. doi: 10.1093/nsr/nwx009
    [6]
    Fleischmann S, Mitchell J B, Wang R C, et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials[J]. Chemical Reviews,2020,120(14):6738-6782. doi: 10.1021/acs.chemrev.0c00170
    [7]
    Lee J S M, Briggs M E, Hu C C, et al. Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers[J]. Nano Energy,2018,46:277-289. doi: 10.1016/j.nanoen.2018.01.042
    [8]
    Li Z, Xu Z W, Wang H L, et al. Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor[J]. Energy & Environmental Science,2014,7(5):1708-1718.
    [9]
    Xu Z X, Zhuang X D, Yang C Q, et al. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets[J]. Advanced Materials,2016,28(10):1981-1987. doi: 10.1002/adma.201505131
    [10]
    Enterria M, Pereira M F R, Martins J I, et al. Hydrothermal functionalization of ordered mesoporous carbons: The effect of boron on supercapacitor performance[J]. Carbon,2015,95:72-83. doi: 10.1016/j.carbon.2015.08.009
    [11]
    Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [12]
    Zhang Y, Qu T T, Xiang K, et al. In situ formation/carbonization of quinone-amine polymers towards hierarchical porous carbon foam with high faradaic activity for energy storage[J]. Journal of Materials Chemistry A,2018,6(5):2353-2359. doi: 10.1039/C7TA09644E
    [13]
    Song Z Y, Miao L, Li L C, et al. A universal strategy to obtain highly redox-active porous carbons for efficient energy storage[J]. Journal of Materials Chemistry A,2020,8(7):3717-3725. doi: 10.1039/C9TA13520K
    [14]
    Zhou M, Li X Y, Zhao H, et al. Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance[J]. Journal of Materials Chemistry A,2018,6(4):1621-1629. doi: 10.1039/C7TA08366A
    [15]
    Wang Y G, Song Y F, Xia Y Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews,2016,45(21):5925-5950. doi: 10.1039/C5CS00580A
    [16]
    Liu B, Liu Y J, Chen H B, et al. Oxygen and nitrogen co-doped porous carbon nanosheets derived from perilla frutescens for high volumetric performance supercapacitors[J]. Journal of Power Sources,2017,341:309-317. doi: 10.1016/j.jpowsour.2016.12.022
    [17]
    Sanchez-Sanchez A, Izquierdo M T, Mathieu S, et al. Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin[J]. Green Chemistry,2017,19(11):2653-2665. doi: 10.1039/C7GC00491E
    [18]
    Liu M R, Zhang K J, Si M Y, et al. Three-dimensional carbon nanosheets derived from micro-morphologically regulated biomass for ultrahigh-performance supercapacitors[J]. Carbon,2019,153:707-716. doi: 10.1016/j.carbon.2019.07.060
    [19]
    Park J H, Lee H J, Cho J Y, et al. Highly exfoliated and functionalized single-walled carbon nanotubes as fast-charging, high-capacity cathodes for rechargeable lithium-ion batteries[J]. ACS Applied Material & Interfaces,2020,12(1):1322-1329.
    [20]
    Liu T Y, Davijani A A B, Sun J Y, et al. Hydrothermally oxidized single-walled carbon nanotube networks for high volumetric electrochemical energy storage[J]. Small,2016,12(25):3423-3431. doi: 10.1002/smll.201600974
    [21]
    Tabti Z, Ruiz-Rosas R, Quijada C, et al. Tailoring the surface chemistry of activated carbon cloth by electrochemical methods[J]. ACS Applied Material & Interfaces,2014,6(14):11682-11691.
    [22]
    Wang W, Liu W Y, Zeng Y X, et al. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Advanced Materials,2015,27(23):3572-3578. doi: 10.1002/adma.201500707
    [23]
    Berenguer R, Nishihara H, Itoi H, et al. Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon[J]. Carbon,2013,54:94-104. doi: 10.1016/j.carbon.2012.11.007
    [24]
    Berenguer R, Marco-Lozar J P, Quijada C, et al. A comparison between oxidation of activated carbon by electrochemical and chemical treatments[J]. Carbon,2012,50(3):1123-1134. doi: 10.1016/j.carbon.2011.10.025
    [25]
    Wang Y, Chang Z, Zhang Z C, et al. A facile approach to improve electrochemical capacitance of carbons by in situ electrochemical oxidation[J]. ACS Applied Material & Interfaces,2019,11(6):5999-6008. doi: 10.1021/acsami.8b19071
    [26]
    Hu Y R, Dong X L, Zhuang H K, et al. Introducing electrochemically active oxygen species to boost the pseudocapacitance of carbon-based supercapacitor[J]. ChemElectroChem,2021,8(16):3073-3079. doi: 10.1002/celc.202100641
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(6195) PDF Downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return