Volume 37 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
ZOU Yi-ming, SUN Chang-chun, LI Shao-wen, BAI Miao, DU Yu-xuan, ZHANG Min, XU Fei, MA Yue. Construction of a flexible, integrated rechargeable Li battery based on a coaxial anode with a carbon fiber core encapsulated in FeNiMnO4 and a nitrogen-doped carbon sheath. New Carbon Mater., 2022, 37(5): 944-955. doi: 10.1016/S1872-5805(22)60617-6
Citation: ZOU Yi-ming, SUN Chang-chun, LI Shao-wen, BAI Miao, DU Yu-xuan, ZHANG Min, XU Fei, MA Yue. Construction of a flexible, integrated rechargeable Li battery based on a coaxial anode with a carbon fiber core encapsulated in FeNiMnO4 and a nitrogen-doped carbon sheath. New Carbon Mater., 2022, 37(5): 944-955. doi: 10.1016/S1872-5805(22)60617-6

Construction of a flexible, integrated rechargeable Li battery based on a coaxial anode with a carbon fiber core encapsulated in FeNiMnO4 and a nitrogen-doped carbon sheath

doi: 10.1016/S1872-5805(22)60617-6
More Information
  • Author Bio:

    邹一鸣,讲师. E-mail:zouyiming_uu@163.com

  • Corresponding author: XU Fei, Professor. E-mail: feixu@nwpu.edu.cn; MA Yue, Professor. E-mail: mayue04@nwpu.edu.cn
  • Received Date: 2022-04-08
  • Rev Recd Date: 2022-05-27
  • Available Online: 2022-05-30
  • Publish Date: 2022-10-01
  • A coaxial anode with a carbon fiber core encapsulated in nanocrystalline FeNiMnO4 with a nitrogen-doped carbon sheath was prepared using carbon fiber cloth as the core, FeNiMnO4 nanocrystallite arrays as the first coating layer and nitrogen-doped carbon derived from F127 (a kind of triblock copolymer)-resorcinol-melamine gel as the outer layer. After annealing at 600 °C it was used as the anode material of an all solid flexible lithium ion battery using LiFePO4 as the cathode material and boron nitride modified polyethylene oxide as the electrolyte. The battery had a large areal capacity of ~1.40 mAh cm−2 and satisfactory cycling stability under different bending and strain states. Annealing below 600 °C leads to incomplete carbonization of the nitrogen-doped carbon and thus a low electrical conductivity while above 600 °C aggregation of FeNiMnO4 nanocrystallites and their detachment during cycling are observed under bending and strain.
  • loading
  • [1]
    Ban X, Zhang W, Chen N, et al. A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery[J]. The Journal of Physical Chemistry C,2018,122(18):9852-9858. doi: 10.1021/acs.jpcc.8b02556
    [2]
    Armand M, Tarascon J M, Building better batteries [J]. Nature, 2008, 451(7179): 652-657.
    [3]
    Song J Y, Wang Y Y, Wan C C Review of gel-type polymer electrolytes for lithium-ion batteries [J]. Journal of Power Sources, 1999, 77(2): 183-197.
    [4]
    Chen Z, Kim G T, Wang Z, et al. 4-V flexible all-solid-state lithium polymer batteries[J]. Nano Energy,2019,64:103986. doi: 10.1016/j.nanoen.2019.103986
    [5]
    Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat Nanotechnol,2019,14(7):705-711. doi: 10.1038/s41565-019-0465-3
    [6]
    Zhao W, Bai M, Li S, et al. Integrated thin film battery design for flexible lithium ion storage: Optimizing the compatibility of the current collector‐free electrodes[J]. Advanced Functional Materials,2019,29(43):1903542. doi: 10.1002/adfm.201903542
    [7]
    Zhang X Q, Cheng X B, Zhang Q. Advances in interfaces between Li metal anode and electrolyte[J]. Advanced Materials Interfaces,2018,5(2):1701097.
    [8]
    Wang W, Liao C, Liew K M, et al. A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries[J]. Journal of Materials Chemistry A,2019,7(12):6859-6868. doi: 10.1039/C8TA11795K
    [9]
    Zhang S Z, Wang X L, Xia X H, et al. Smart construction of intimate interface between solid polymer electrolyte and 3D-array electrode for quasi-solid-state lithium ion batteries[J]. Journal of Power Sources,2019,434:226726. doi: 10.1016/j.jpowsour.2019.226726
    [10]
    Jing L, Lian G, Han S, et al. A self-etched template method to prepare CHS@MoS2 hollow microspheres for lithium-ion storage[J]. Journal of Alloys and Compounds,2019,801:367-374. doi: 10.1016/j.jallcom.2019.05.354
    [11]
    Shen B, Zhang T W, Yin Y C, et al. Chemically exfoliated boron nitride nanosheets form robust interfacial layers for stable solid-state Li metal batteries[J]. Chemical Communication,2019,55(53):7703-7706. doi: 10.1039/C9CC02124H
    [12]
    Wang Y, Zhang D, Wang Y, et al. Self-limiting electrode with double-carbon layers as walls for efficient sodium storage performance[J]. Nanoscale,2019,11(22):11025-11032. doi: 10.1039/C9NR02449B
    [13]
    Li Y, Mu L, Hu Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials,2016,2:139-145. doi: 10.1016/j.ensm.2015.10.003
    [14]
    Salhabi E H M, Zhao J, Wang J, et al. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries[J]. Angewandate Chemie Internatioanal Ed in English,2019,58(27):9078-9082. doi: 10.1002/anie.201903295
    [15]
    Wang B, Ryu J, Choi S, et al. Folding graphene film yields high areal energy storage in lithium-ion batteries[J]. ACS Nano,2018,12(2):1739-1746. doi: 10.1021/acsnano.7b08489
    [16]
    Bai M, Tang X, Sun C, et al. Ternary anode design for sustainable battery technology: An off-stoichiometric Sn/SnSiOx+2@C composite recycled from biomass[J]. ACS Sustainable Chemistry & Engineering,2019,7(14):12563-12573.
    [17]
    Wu Z S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano,2010,4(6):3187-3194. doi: 10.1021/nn100740x
    [18]
    Chen D, Ji G, Ma Y, et al. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries[J]. ACS & Applied Materials Interfaces,2011,3(8):3078-3083. doi: 10.1021/am200592r
    [19]
    Zhao N, Liu Y, Zhao X, et al. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability[J]. Nanoscale,2016,8(3):1545-1554. doi: 10.1039/C5NR06888F
    [20]
    Chou S L, Lu L, Wang J Z, et al. The compatibility of transition metal oxide/carbon composite anode and ionic liquid electrolyte for the lithium-ion battery[J]. Journal of Applied Electrochemistry,2011,41(11):1261-1267. doi: 10.1007/s10800-011-0330-z
    [21]
    Xue Y, Wang Y. A review of the alpha-Fe2O3 (hematite) nanotube structure: Recent advances in synthesis, characterization, and applications[J]. Nanoscale,2020,12(20):10912-10932.
    [22]
    Yang S, Han Z, Zheng F, et al. ZnFe2O4 nanoparticles-cotton derived hierarchical porous active carbon fibers for high rate-capability supercapacitor electrodes[J]. Carbon,2018,134:15-21. doi: 10.1016/j.carbon.2018.03.071
    [23]
    Huang J, Wang W, Lin X, et al. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes[J]. Journal of Power Sources,2018,378:677-684. doi: 10.1016/j.jpowsour.2018.01.029
    [24]
    Hou X, Zhu G, Niu X, et al. Ternary transition metal oxide derived from Prussian blue analogue for high-performance lithium ion battery[J]. Journal of Alloys and Compounds,2017,729:518-525. doi: 10.1016/j.jallcom.2017.09.203
    [25]
    Ma Y, Tai C W, Li S, et al. Multiscale interfacial strategy to engineer mixed metal-oxide anodes toward enhanced cycling efficiency[J]. ACS & Applied Materials Interfaces,2018,10(23):20095-20105. doi: 10.1021/acsami.8b02908
    [26]
    Kim D, Kang S H, Slater M, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes[J]. Advanced Energy Materials,2011,1(3):333-336. doi: 10.1002/aenm.201000061
    [27]
    Casanovas J, Ricart J M, Rubio J, et al. Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials[J]. Journal of the American Chemical Society,1996,118:8071-8076. doi: 10.1021/ja960338m
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(557) PDF Downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return