Volume 37 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
GAO Yi-fu, WANG Yao, ZHOU Dong, LU Wei, KANG Fei-yu. Permselective graphene-based membranes and their applications in seawater desalination. New Carbon Mater., 2022, 37(4): 625-640. doi: 10.1016/S1872-5805(22)60618-8
Citation: GAO Yi-fu, WANG Yao, ZHOU Dong, LU Wei, KANG Fei-yu. Permselective graphene-based membranes and their applications in seawater desalination. New Carbon Mater., 2022, 37(4): 625-640. doi: 10.1016/S1872-5805(22)60618-8

Permselective graphene-based membranes and their applications in seawater desalination

doi: 10.1016/S1872-5805(22)60618-8
More Information
  • Two-dimensional materials represented by graphene are widely used to fabricate membranes with nanopores or nanochannels and have shown great promise in the field of mass separation, especially seawater desalination. We review the research progress and applications of graphene and its derivatives, including single-layer graphene, nanoporous graphene and graphene oxide, in the field of seawater desalination. Based on an overview of the intrinsic properties of graphene, the permeability and selectivity of porous graphene membranes with one-dimensional nanopores, and lamellar graphene oxide membranes with two-dimensional nanochannels are first discussed. In addition, different preparation processes and their effects on the permselectivity of graphene-based membranes are compared. Methods for regulating the mechanism of the permselectivity of graphene-based membranes for various solutions are analyzed. The use of graphene-based membranes in seawater desalination and the existing limitations are summarized, and prospects for future developments of this research area are proposed.
  • loading
  • [1]
    Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advances,2016,2(2):e1500323. doi: 10.1126/sciadv.1500323
    [2]
    Deshmukh A, Boo C, Karanikola V, et al. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges[J]. Energy & Environmental Science,2018,11(5):1177-1196.
    [3]
    Sharqawy M H, Lienhard J H, Zubair S M. Thermophysical properties of seawater: a review of existing correlations and data[J]. Desalination and Water Treatment,2012,16(1-3):354-380.
    [4]
    Mayor B. Growth patterns in mature desalination technologies and analogies with the energy field[J]. Desalination,2019,457:75-84. doi: 10.1016/j.desal.2019.01.029
    [5]
    Jones E, Qadir M, Van Vliet M T H, et al. The state of desalination and brine production: A global outlook[J]. Science of The Total Environment,2019,657:1343-1356. doi: 10.1016/j.scitotenv.2018.12.076
    [6]
    Mi B. Graphene oxide membranes for ionic and molecular sieving[J]. Science,2014,343(6172):740-742. doi: 10.1126/science.1250247
    [7]
    Zhao S, Xue J, Kang W. Ion selection of charge-modified large nanopores in a graphene sheet[J]. The Journal of Chemical Physics,2013,139(11):114702. doi: 10.1063/1.4821161
    [8]
    Babu P, Nambiar A, He T, et al. A review of clathrate hydrate based desalination to strengthen energy–water nexus[J]. ACS Sustainable Chemistry & Engineering,2018,6(7):8093-8107.
    [9]
    Deng J, You Y, Bustamante H, et al. Mechanism of water transport in graphene oxide laminates[J]. Chemical Science,2017,8(3):1701-1704. doi: 10.1039/C6SC03909J
    [10]
    Kucera J. Biofouling of polyamide membranes: fouling mechanisms, current mitigation and cleaning strategies, and future prospects[J]. Membranes,2019,9(9):111. doi: 10.3390/membranes9090111
    [11]
    Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination—development to date and future potential[J]. Journal of Membrane Science,2011,370(1-2):1-22. doi: 10.1016/j.memsci.2010.12.036
    [12]
    Di Vincenzo M, Tiraferri A, Musteata V E, et al. Biomimetic artificial water channel membranes for enhanced desalination[J]. Nature Nanotechnology,2021,16(2):190-196. doi: 10.1038/s41565-020-00796-x
    [13]
    Homaeigohar S, Elbahri M. Graphene membranes for water desalination[J]. NPG Asia Materials,2017,9(8):e427. doi: 10.1038/am.2017.135
    [14]
    Mogg L, Zhang S, Hao G P, et al. Perfect proton selectivity in ion transport through two-dimensional crystals[J]. Nature Communications,2019,10(1):4243. doi: 10.1038/s41467-019-12314-2
    [15]
    Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters,2008,8(8):2458-2462. doi: 10.1021/nl801457b
    [16]
    Johnson D J, Hilal N. Can graphene and graphene oxide materials revolutionise desalination processes?[J]. Desalination,2021,500:114852. doi: 10.1016/j.desal.2020.114852
    [17]
    Koltonow A R, Huang J. Two-dimensional nanofluidics[J]. Science,2016,351(6280):1395-1396. doi: 10.1126/science.aaf5289
    [18]
    Cohen-Tanugi D, Grossman J C. Nanoporous graphene as a reverse osmosis membrane: Recent insights from theory and simulation[J]. Desalination,2015,366:59-70. doi: 10.1016/j.desal.2014.12.046
    [19]
    Surwade S P, Smirnov S N, Vlassiouk I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnology,2015,10(5):459-464. doi: 10.1038/nnano.2015.37
    [20]
    Xu W L, Fang C, Zhou F, et al. Self-assembly: A facile way of forming ultrathin, high-performance graphene oxide membranes for water purification[J]. Nano Letters,2017,17(5):2928-2933. doi: 10.1021/acs.nanolett.7b00148
    [21]
    Sun Y, Li S, Zhuang Y, et al. Adjustable interlayer spacing of ultrathin mxene-derived membranes for ion rejection[J]. Journal of Membrane Science,2019,591:117350. doi: 10.1016/j.memsci.2019.117350
    [22]
    Li H, Ko T-J, Lee M, et al. Experimental realization of few layer two-dimensional MoS2 membranes of near atomic thickness for high efficiency water desalination[J]. Nano Letters,2019,19(8):5194-5204. doi: 10.1021/acs.nanolett.9b01577
    [23]
    Kidambi P R, Chaturvedi P, Moehring N K. Subatomic species transport through atomically thin membranes: present and future applications[J]. Science,2021,374(6568):eabd7687. doi: 10.1126/science.abd7687
    [24]
    Wang L, Williams C M, Boutilier M S H, et al. Single-layer graphene membranes withstand ultrahigh applied pressure[J]. Nano Letters,2017,17(5):3081-3088. doi: 10.1021/acs.nanolett.7b00442
    [25]
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [26]
    Koenig S P, Boddeti N G, Dunn M L, et al. Ultrastrong adhesion of graphene membranes[J]. Nature Nanotechnology,2011,6(9):543-546. doi: 10.1038/nnano.2011.123
    [27]
    Leenaerts O, Partoens B, Peeters F M. Graphene: A perfect nanoballoon[J]. Applied Physics Letters,2008,93(19):193107. doi: 10.1063/1.3021413
    [28]
    Miao M, Nardelli M B, Wang Q, et al. First principles study of the permeability of graphene to hydrogen atoms[J]. Physical Chemistry Chemical Physics,2013,15(38):16132. doi: 10.1039/c3cp52318g
    [29]
    Hu S, Lozada-Hidalgo M, Wang F C, et al. Proton transport through one-atom-thick crystals[J]. Nature,2014,516(7530):227-230. doi: 10.1038/nature14015
    [30]
    Lozada-Hidalgo M, Hu S, Marshall O, et al. Sieving hydrogen isotopes through two-dimensional crystals[J]. Science,2016,351(6268):68-70. doi: 10.1126/science.aac9726
    [31]
    Lozada-Hidalgo M, Zhang S, Hu S, et al. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping[J]. Nature Communications,2017,8(1):15215. doi: 10.1038/ncomms15215
    [32]
    Achtyl J L, Unocic R R, Xu L, et al. Aqueous proton transfer across single-layer graphene[J]. Nature Communications,2015,6(1):6539. doi: 10.1038/ncomms7539
    [33]
    Walker M I, Braeuninger-Weimer P, Weatherup R S, et al. Measuring the proton selectivity of graphene membranes[J]. Applied Physics Letters,2015,107(21):213104. doi: 10.1063/1.4936335
    [34]
    Feng Y, Chen J, Fang W, et al. Hydrogenation facilitates proton transfer through two-dimensional honeycomb crystals[J]. The Journal of Physical Chemistry Letters,2017,8(24):6009-6014. doi: 10.1021/acs.jpclett.7b02820
    [35]
    Poltavsky I, Zheng L, Mortazavi M, et al. Quantum tunneling of thermal protons through pristine graphene[J]. The Journal of Chemical Physics,2018,148(20):204707. doi: 10.1063/1.5024317
    [36]
    An Y, Oliveira A F, Brumme T, et al. Stone–wales defects cause high proton permeability and isotope selectivity of single‐layer graphene[J]. Advanced Materials,2020,32(37):2002442. doi: 10.1002/adma.202002442
    [37]
    Cai X, Luo Y, Liu B, et al. Preparation of 2D material dispersions and their applications[J]. Chemical Society Reviews,2018,47(16):6224-6266. doi: 10.1039/C8CS00254A
    [38]
    Li Y, Chopra N. Progress in large-scale production of graphene. part 2: vapor methods[J]. JOM,2015,67(1):44-52. doi: 10.1007/s11837-014-1237-z
    [39]
    Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science,2006,312(5777):1191-1196. doi: 10.1126/science.1125925
    [40]
    Wintterlin J, Bocquet M-L. Graphene on metal surfaces[J]. Surface Science,2009,603(10-12):1841-1852. doi: 10.1016/j.susc.2008.08.037
    [41]
    Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457(7230):706-710. doi: 10.1038/nature07719
    [42]
    Cohen-Tanugi D, Grossman J C. Water desalination across nanoporous graphene[J]. Nano Letters,2012,12(7):3602-3608. doi: 10.1021/nl3012853
    [43]
    O’Hern S C, Stewart C A, Boutilier M S H, et al. Selective molecular transport through intrinsic defects in a single layer of cvd graphene[J]. ACS Nano,2012,6(11):10130-10138. doi: 10.1021/nn303869m
    [44]
    Qin Y, Hu Y, Koehler S, et al. Ultrafast nanofiltration through large-area single-layered graphene membranes[J]. ACS Applied Materials & Interfaces,2017,9(11):9239-9244.
    [45]
    O’Hern S C, Jang D, Bose S, et al. Nanofiltration across defect-sealed nanoporous monolayer graphene[J]. Nano Letters,2015,15(5):3254-3260. doi: 10.1021/acs.nanolett.5b00456
    [46]
    Kazemi A S, Hosseini S M, Abdi Y. Large total area membrane of suspended single layer graphene for water desalination[J]. Desalination,2019,451:160-171. doi: 10.1016/j.desal.2017.12.050
    [47]
    Yang Y, Yang X, Liang L, et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration[J]. Science,2019,364(6445):1057-1062. doi: 10.1126/science.aau5321
    [48]
    Zhang Z, Li S, Mi B, et al. Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off[J]. Science Advances,2020,6(34):eaba9471. doi: 10.1126/sciadv.aba9471
    [49]
    Sint K, Wang B, Král P. Selective ion passage through functionalized graphene nanopores[J]. Journal of the American Chemical Society,2008,130(49):16448-16449. doi: 10.1021/ja804409f
    [50]
    O’Hern S C, Boutilier M S H, Idrobo J C, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes[J]. Nano Letters,2014,14(3):1234-1241. doi: 10.1021/nl404118f
    [51]
    Rollings R C, Kuan A T, Golovchenko J A. Ion selectivity of graphene nanopores[J]. Nature Communications,2016,7(1):11408. doi: 10.1038/ncomms11408
    [52]
    Caglar M, Silkina I, Brown B T, et al. Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride[J]. ACS Nano,2020,14(3):2729-2738. doi: 10.1021/acsnano.9b08168
    [53]
    Wang S, Dong Y, He C, et al. The role of sp2/sp3 hybrid carbon regulation in the nonlinear optical properties of graphene oxide materials[J]. RSC Advances,2017,7(84):53643-53652. doi: 10.1039/C7RA10505C
    [54]
    Li Y, Zhao W, Weyland M, et al. Thermally reduced nanoporous graphene oxide membrane for desalination[J]. Environmental Science & Technology,2019,53(14):8314-8323.
    [55]
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339. doi: 10.1021/ja01539a017
    [56]
    Su P, Wang F, Li Z, et al. Graphene oxide membranes: controlling their transport pathways[J]. Journal of Materials Chemistry A,2020,8(31):15319-15340. doi: 10.1039/D0TA02249G
    [57]
    Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak–tight graphene-based membranes[J]. Science,2012,335(6067):442-444. doi: 10.1126/science.1211694
    [58]
    Sun P, Liu H, Wang K, et al. Ultrafast liquid water transport through graphene-based nanochannels measured by isotope labelling[J]. Chemical Communications,2015,51(15):3251-3254. doi: 10.1039/C4CC10103K
    [59]
    Sun P, Zhu M, Wang K, et al. Selective ion penetration of graphene oxide membranes[J]. ACS Nano,2013,7(1):428-437. doi: 10.1021/nn304471w
    [60]
    Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science,2014,343(6172):752-754. doi: 10.1126/science.1245711
    [61]
    Jian M, Qiu R, Xia Y, et al. Ultrathin water-stable metal-organic framework membranes for ion separation[J]. Science Advances,2020,6(23):eaay3998. doi: 10.1126/sciadv.aay3998
    [62]
    Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology,2013,47(8):3715-3723.
    [63]
    Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials,2013,23(29):3693-3700. doi: 10.1002/adfm.201202601
    [64]
    Huang H, Mao Y, Ying Y, et al. Salt concentration, ph and pressure controlled separation of small molecules through lamellar graphene oxide membranes[J]. Chemical Communications,2013,49(53):5963-5965. doi: 10.1039/c3cc41953c
    [65]
    Sun P, Zheng F, Wang K, et al. Electro- and magneto-modulated ion transport through graphene oxide membranes[J]. Scientific Reports,2015,4(1):6798. doi: 10.1038/srep06798
    [66]
    Sun P, Chen Q, Li X, et al. Highly efficient quasi-static water desalination using monolayer graphene oxide/titania hybrid laminates[J]. NPG Asia Materials,2015,7(2):e162. doi: 10.1038/am.2015.7
    [67]
    Zhang M, Guan K, Ji Y, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nature Communications,2019,10(1):1253. doi: 10.1038/s41467-019-09286-8
    [68]
    Zheng S, Tu Q, Urban J J, et al. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms[J]. ACS Nano,2017,11(6):6440-6450. doi: 10.1021/acsnano.7b02999
    [69]
    Medhekar N V, Ramasubramaniam A, Ruoff R S, et al. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties[J]. ACS Nano,2010,4(4):2300-2306. doi: 10.1021/nn901934u
    [70]
    Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology,2017,12(6):546-550. doi: 10.1038/nnano.2017.21
    [71]
    Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature,2017,550(7676):380-383. doi: 10.1038/nature24044
    [72]
    Geise G M, Park H B, Sagle A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. Journal of Membrane Science,2011,369(1-2):130-138. doi: 10.1016/j.memsci.2010.11.054
    [73]
    Algara-Siller G, Lehtinen O, Wang F C, et al. Square ice in graphene nanocapillaries[J]. Nature,2015,519(7544):443-445. doi: 10.1038/nature14295
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(1039) PDF Downloads(224) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return