Volume 37 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
LIU Ao, LIU Tie-feng, YUAN Hua-dong, WANG Yao, LIU Yu-jing, LUO Jian-min, NAI Jian-wei, TAO Xin-yong. A review of biomass-derived carbon materials for lithium metal anodes. New Carbon Mater., 2022, 37(4): 658-674. doi: 10.1016/S1872-5805(22)60620-6
Citation: LIU Ao, LIU Tie-feng, YUAN Hua-dong, WANG Yao, LIU Yu-jing, LUO Jian-min, NAI Jian-wei, TAO Xin-yong. A review of biomass-derived carbon materials for lithium metal anodes. New Carbon Mater., 2022, 37(4): 658-674. doi: 10.1016/S1872-5805(22)60620-6

A review of biomass-derived carbon materials for lithium metal anodes

doi: 10.1016/S1872-5805(22)60620-6
Funds:  National Natural Science Foundation of China (U21A20174, 51722210 and 51972285), Natural Science Foundation of Zhejiang Province (LY17E0202010, LD18E020003 and LQ20E030012), Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2020R01002).
More Information
  • Corresponding author: YUAN Hua-dong, Postdoctor. E-mail: hdyuan@zjut.edu.cn; TAO Xin-yong, Professor. E-mail: tao@zjut.edu.cn;
  • Received Date: 2022-04-12
  • Rev Recd Date: 2022-06-07
  • Available Online: 2022-06-13
  • Publish Date: 2022-07-20
  • Because of its high theoretical capacity and lowest reduction potential, lithium metal has been considered the “Holy Grail” anode material for high energy density battery systems. However, the practical use of lithium metal anodes (LMAs) has been plagued by a series of problems such as the inability of lithium metal to act as a host for other atoms, uncontrollable lithium dendrite growth, unstable solid-electrolyte interfaces, and “dead” lithium accumulation. Biomass-derived carbon materials are considered ideal host materials for Li metal because of their high mechanical strength, high conductivity, high surface area, and good chemical stability. This review presents a historical framework of using biomass-derived carbon materials as a framework for LMAs. The design and use of biomass-derived carbon materials in suppressing Li dendrite growth and constructing stable LMAs are summarized. The impact of the structure, porosity and “lithiophilicity” modification on the performance of LMAs is discussed. Prospects for the use of biomass-derived carbon materials and the challenges faced are suggested.
  • loading
  • [1]
    Jiang L, Sheng L, Fan Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage[J]. Science China Materials,2017,61(2):133-158. doi: https://doi.org/10.1007/s40843-017-9169-4
    [2]
    Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015,7(1):19-29. doi: 10.1038/nchem.2085
    [3]
    Hua X, Eggeman A S, Castillo-Martinez E, et al. Revisiting metal fluorides as lithium-ion battery cathodes[J]. Nature Materials,2021,20(6):841-850. doi: 10.1038/s41563-020-00893-1
    [4]
    Xiao A W, Lee H J, Capone I, et al. Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes[J]. Nature Materials,2020,19(6):644-654. doi: 10.1038/s41563-020-0621-z
    [5]
    Chen M, Zheng J, Sheng O, et al. Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode[J]. Journal of Materials Chemistry A,2019,7(31):18267-18274. doi: 10.1039/C9TA05684J
    [6]
    Zhang X Q, Cheng X B, Zhang Q. Advances in Interfaces between Li Metal Anode and Electrolyte[J]. Advanced Materials Interfaces,2018,5(2):1701097. doi: 10.1002/admi.201701097
    [7]
    Yuan H D, Nai J W, Tian H, et al. An ultrastable lithium metal anode enabled by designed metal fluoride spansules[J]. Science Advances,2020,6(10):eaaz3112. doi: 10.1126/sciadv.aaz3112
    [8]
    Wang H S, Lin D C, Liu Y Y, et al. Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework[J]. Science Advances,2017,3(9):e1701301. doi: 10.1126/sciadv.1701301
    [9]
    Yuan H D, Liu T F, Liu Y J, et al. A review of biomass materials for advanced lithium-sulfur batteries[J]. Chemical Science,2019,10(32):7484-7495. doi: 10.1039/C9SC02743B
    [10]
    Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O-2 and Li-S batteries with high energy storage[J]. Nature Materials,2012,11(1):19-29. doi: 10.1038/nmat3191
    [11]
    Yuan H D, Ding X F, Liu T F, et al. A review of concepts and contributions in lithium metal anode development[J]. Materials Today,2022, 53:1369-7021.
    [12]
    Zheng J H, Ju Z J, Zhang B L, et al. Lithium ion diffusion mechanism on the inorganic components of the solid-electrolyte interphase[J]. Journal of Materials Chemistry A,2021,9(16):10251-10259. doi: 10.1039/D0TA11444H
    [13]
    Xia C, Kwok C Y, Nazar L F. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide[J]. Science,2018,361(6404):777-781. doi: 10.1126/science.aas9343
    [14]
    Yan C, Cheng X B, Tian Y, et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition[J]. Advanced Materials,2018,30(25):1707629. doi: 10.1002/adma.201707629
    [15]
    Zhang T, Lu H C, Yang J, et al. Stable lithium metal anode enabled by a lithiophilic and electron/ion conductive framework[J]. ACS Nano,2020,14(5):5618-5627. doi: 10.1021/acsnano.9b10083
    [16]
    Harry K J, Hallinan D T, Parkinson D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials,2014,13(1):69-73. doi: 10.1038/nmat3793
    [17]
    Liu L, Yin Y X, Li J Y, et al. Uniform lithium nucleation/growth Induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials,2018,30(10):1706216. doi: 10.1002/adma.201706216
    [18]
    Jin C B, Liu T F, Sheng O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy,2021,6(4):378-387. doi: 10.1038/s41560-021-00789-7
    [19]
    Liu Y J, Ju Z J, Zhang B L, et al. Visualizing the sensitive lithium with atomic precision: Cryogenic electron microscopy for batteries[J]. Accounts of Chemical Research,2021,54(9):2088-2099. doi: 10.1021/acs.accounts.1c00120
    [20]
    Yuan H D, Wu M, Zheng J H, et al. Empowering metal phosphides anode with catalytic attribute toward superior cyclability for Lithium-Ion storage[J]. Advanced Functional Materials,2019,29(17):1809051. doi: 10.1002/adfm.201809051
    [21]
    Deng W, Zhou X F, Fang Q L, et al. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes[J]. Advanced Energy Materials,2018,8(12):1703152. doi: 10.1002/aenm.201703152
    [22]
    Zhang R, Cheng X B, Zhao C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials,2016,28(11):2155-2162. doi: 10.1002/adma.201504117
    [23]
    Yin Y C, Yu Z L, Ma Z Y, et al. Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode[J]. National Science Review,2019,6(2):247-256. doi: 10.1093/nsr/nwy148
    [24]
    Sun Z W, Jin S, Jin H C, et al. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes[J]. Advanced Materials,2018,30(32):1800884. doi: 10.1002/adma.201800884
    [25]
    Jin C B, Sheng O W, Chen M, et al. Armed lithium metal anodes with functional skeletons[J]. Materials Today Nano,2021,13:100103. doi: 10.1016/j.mtnano.2020.100103
    [26]
    Liu Y J, Wu Y X, Zheng J L, et al. Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes[J]. Nano Energy,2021,82:105723. doi: 10.1016/j.nanoen.2020.105723
    [27]
    Zhang B L, Shi H D, Ju Z J, et al. Arrayed silk fibroin for high-performance Li metal batteries and atomic interface structure revealed by cryo-TEM[J]. Journal of Materials Chemistry A,2020,8(48):26045-26054. doi: 10.1039/D0TA09753E
    [28]
    Wu H, Zhuo D, Kong D S, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications, 2014, 5(1): 5-6. DOI: https://doi.org/10.1038/ncomms6193.
    [29]
    Lee H, Ren X D, Niu C J, et al. Suppressing lithium dendrite growth by metallic coating on a separator[J]. Advanced Functional Materials,2017,27(45):1704391. doi: 10.1002/adfm.201704391
    [30]
    Liu Y J, Tao X Y, Wang Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries[J]. Science,2022,375(6582):739-745. doi: 10.1126/science.abn1818
    [31]
    Ju Z, Nai J, Wang Y, et al. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy[J]. Nature communications,2020,11(1):488. doi: 10.1038/s41467-020-14358-1
    [32]
    Chen M, Zheng J H, Liu Y J, et al. Marrying ester group with lithium salt: Cellulose‐acetate‐enabled LiF‐enriched interface for stable lithium metal anode[J]. Advanced Functional Materials,2021,31(36):2102228. doi: 10.1002/adfm.202102228
    [33]
    Piao N, Ji X, Xu H, et al. Countersolvent electrolytes for lithium‐metal batteries[J]. Advanced Energy Materials,2020,10(10):1903568. doi: 10.1002/aenm.201903568
    [34]
    Sheng O W, Jin C B, Ding X F, et al. A decade of progress on solid-state electrolytes for secondary batteries: Advances and contributions[J]. Advanced Functional Materials,2021,31(27):2100891. doi: 10.1002/adfm.202100891
    [35]
    Sheng O W, Zheng J H, Ju Z J, et al. In situ construction of a LiF-Enriched interface for stable all-solid-state batteries and its origin revealed by Cryo-TEM[J]. Advanced Materials,2020,32(34):2000223.
    [36]
    Ma C, Dai K, Hou H S, et al. High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers[J]. Advanced Science,2018,5(5):1700996. doi: 10.1002/advs.201700996
    [37]
    Bouchet R, Maria S, Meziane R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nature Materials,2013,12(5):452-457. doi: 10.1038/nmat3602
    [38]
    Liu T F, Zheng J L, Hu H L, et al. In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries[J]. Journal of Energy Chemistry,2021,55:272-278. doi: 10.1016/j.jechem.2020.07.009
    [39]
    Zhu Z H, Liu Y J, Ju Z J, et al. Synthesis of diverse green carbon nanomaterials through fully utilizing biomass carbon source assisted by KOH[J]. ACS Applied Materials & Interfaces,2019,11(27):24205-24211 DOI.org/10.1021/acsami.9b08420.
    [40]
    Huang G, Han J, Zhang F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials,2019,31(2):1805334.
    [41]
    Chen D, Huang S, Zhong L, et al. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture[J]. Advanced Functional Materials,2019,30(7):1907717.
    [42]
    Liu J, Yuan H, Tao X Y, et al. Recent progress on biomass‐derived ecomaterials toward advanced rechargeable lithium batteries[J]. EcoMat,2020,2(1):e12019. doi: DOI.org/10.1002/eom2.12019
    [43]
    Zheng G Y, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology,2014,9(8):618-623. doi: 10.1038/nnano.2014.152
    [44]
    Siwal S S, Zhang Q B, Devi N, et al. Carbon-based polymer nanocomposite for high-performance energy storage applications[J]. Polymers,2020,12(3):505. doi: 10.3390/polym12030505
    [45]
    Deng J, Li M M, Wang Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion[J]. Green Chemistry,2016,18(18):4824-4854. doi: 10.1039/C6GC01172A
    [46]
    Zheng X Y, Luo J Y, Lv W, et al. Two-dimensional porous carbon: Synthesis and ion-transport properties[J]. Advanced Materials,2015,27(36):5388-5395. doi: 10.1002/adma.201501452
    [47]
    Chen Y, Shi J L. Mesoporous carbon biomaterials[J]. Science China Materials,2015,58(3):241-257. doi: 10.1007/s40843-015-0037-2
    [48]
    Song G, Qin F Z, Yu J F, et al. Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks[J]. Journal of Hazardous Materials,2022,424:127663. doi: 10.1016/j.jhazmat.2021.127663
    [49]
    Tang X F, Liu D, Wang Y J, et al. Research advances in biomass-derived nanostructured carbons and their composite materials for electrochemical energy technologies[J]. Progress in Materials Science,2021,118:100770. doi: 10.1016/j.pmatsci.2020.100770
    [50]
    Gaddam R R, Yang D F, Narayan R, et al. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries[J]. Nano Energy,2016,26:346-352. doi: 10.1016/j.nanoen.2016.05.047
    [51]
    Lai F L, Miao Y E, Zuo L Z, et al. Biomass-derived nitrogen-doped carbon nanofiber network: A facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode[J]. Small,2016,12(24):3235-3244. doi: 10.1002/smll.201600412
    [52]
    Stanzione J, La Scala J. Sustainable polymers and polymer science: Dedicated to the life and work of Richard P. Wool[J]. Journal of Applied Polymer Science,2016,133(45):44212. doi: 10.1002/app.44212
    [53]
    Niu J, Shao R, Liang J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors[J]. Nano Energy,2017,36:322-330.
    [54]
    Yu H, Zhang W L, Li T, et al. Capacitive performance of porous carbon nanosheets derived from biomass cornstalk[J]. RSC Advances,2017,7(2):1067-1074. doi: 10.1039/C6RA25899A
    [55]
    Wang Z H, Shen D K, Wu C F, et al. State-of-the-art on the production and application of carbon nanomaterials from biomass[J]. Green Chemistry,2018,20(22):5031-5057. doi: 10.1039/C8GC01748D
    [56]
    Jin C B, Nai J W, Sheng O W, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy & Environmental Science,2021,14(3):1326-1379. doi: DOI.org/10.1039/D0EE02848G
    [57]
    Wang Y L, Zhang M C, Shen X Y, et al. Biomass-derived carbon materials: Controllable preparation and versatile applications[J]. Small,2021,17(40):2008079. doi: 10.1002/smll.202008079
    [58]
    Yang Q W, Zhang Z Q, Sun X G, et al. Ionic liquids and derived materials for lithium and sodium batteries[J]. Chemical Society Reviews,2018,47(6):2020-2064. doi: 10.1039/C7CS00464H
    [59]
    Chang J, Shang J, Sun Y, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications,2018,9(1):1-11. doi: 10.1038/s41467-017-02088-w
    [60]
    Shi P, Li T, Zhang R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced Materials,2019,31(8):1807131. doi: 10.1002/adma.201807131
    [61]
    Wang T, Villegas Salvatierra R, Jalilov A S, et al. Ultrafast charging high capacity asphalt-lithium metal batteries[J]. ACS Nano,2017,11(11):10761-10767. doi: 10.1021/acsnano.7b05874
    [62]
    Xiong W S, Xia Y, Jiang Y, et al. Highly conductive and robust three-dimensional host with excellent alkali metal infiltration boosts ultrastable lithium and sodium metal anodes[J]. ACS Applied Materials & interfaces,2018,10(25):21254-21261.
    [63]
    Wu H L, Zhang Y B, Deng Y Q, et al. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes[J]. Science China Materials,2019,62(1):87-94. doi: 10.1007/s40843-018-9298-x
    [64]
    He S J, Chen W. Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors[J]. Journal of Power Sources,2015,294:150-158. doi: 10.1016/j.jpowsour.2015.06.051
    [65]
    Jiang Q, Zhang Z H, Yin S Y, et al. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries[J]. Applied Surface Science,2016,379:73-82. doi: 10.1016/j.apsusc.2016.03.204
    [66]
    Wei T Y, Wei X L, Gao Y, et al. Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors[J]. Electrochimica Acta,2015,169:186-194. doi: 10.1016/j.electacta.2015.04.082
    [67]
    Liu B, Zhou X, Chen H, et al. Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance[J]. Electrochimica Acta,2016,208:55-63. doi: 10.1016/j.electacta.2016.05.020
    [68]
    Rahman K U, Ferreira-Neto E P, Rahman G U, et al. Flexible bacterial cellulose-based BC-SiO2-TiO2-Ag membranes with self-cleaning, photocatalytic, antibacterial and UV-shielding properties as a potential multifunctional material for combating infections and environmental applications[J]. Journal of Environmental Chemical Engineering,2021,9(1):104708.
    [69]
    Long C, Qi D, Wei T, et al. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose[J]. Advanced Functional Materials,2014,24(25):3953-3961. doi: 10.1002/adfm.201304269
    [70]
    Shan D D, Yang J, Liu W, et al. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2016,4(35):13589-13602. doi: 10.1039/C6TA05406D
    [71]
    Hao X D, Wang J, Ding B, et al. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources,2017,352:34-41. doi: 10.1016/j.jpowsour.2017.03.088
    [72]
    Zhang Y L Q, Han J, et al. Bacterial cellulose-derived three-dimensional carbon current collectors for dendrite-free lithium metal anodes[J]. Acta Physica-Chimica Sinica,2021,37(2):2008088. doi: DOI:10.3866/PKU.WHXB202008088
    [73]
    Gong L, Zhang D, Jiang C, et al. 3D lithiophilic ZnO modified biomass porous carbon derived from absorbent cotton for highly stable lithium metal anode[J]. Journal of Central South University of Science and Technology,2020,51(11):3233-3241.
    [74]
    Shen W, Hu T, Wang P, et al. Hollow porous carbon fiber from cotton with nitrogen doping[J]. Chempluschem,2014,79(2):284-289. doi: 10.1002/cplu.201300359
    [75]
    Liu L, Yin Y-X, Li J-Y, et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes[J]. Joule,2017,1(3):563-575. doi: 10.1016/j.joule.2017.06.004
    [76]
    Liu Y, Shi Z, Gao Y, et al. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes[J]. ACS Applied Materials & interfaces,2016,8(42):28283-28290. doi: DOI.org/10.1021/acsami.5b11558
    [77]
    Gao Z, Zhang Y, Song N, et al. Towards flexible lithium-sulfur battery from natural cotton textile[J]. Electrochimica Acta,2017,246:507-516.
    [78]
    Cheng P, Li T, Yu H, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J]. Journal of Physical Chemistry C,2016,120(4):2079-2086. doi: 10.1021/acs.jpcc.5b11280
    [79]
    Wang C, Huang J, Qi H, et al. Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage[J]. Journal of Power Sources,2017,358:85-92. doi: 10.1016/j.jpowsour.2017.05.011
    [80]
    Li Y, Wang G, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy,2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038
    [81]
    Wang K, Yan R, Zhao N, et al. Bio-inspired hollow activated carbon microtubes derived from willow catkins for supercapacitors with high volumetric performance[J]. Materials Letters,2016,174:249-252. doi: 10.1016/j.matlet.2016.03.063
    [82]
    Wei Y. Activated carbon microtubes prepared from plant biomass (Poplar Catkins) and their application for supercapacitors[J]. Chemistry Letters,2014,43(2):216-218. doi: 10.1246/cl.130837
    [83]
    Cai W, Li G, Luo D, et al. The dual‐play of 3D conductive scaffold embedded with Co, N codoped hollow polyhedra toward high‐performance Li–S Full cell[J]. Advanced Energy Materials,2018,8(34):1802561. doi: 10.1002/aenm.201802561
    [84]
    Wei L, Qin A, Guo S, et al. Research progress on the preparation of two-dimensional carbon materials based on biomass[J]. Journal of Functional Materials,2019,50(1):1067-1074. doi: 10.3969/j.issn.1001-9731.2019.01.009
    [85]
    Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [86]
    Xiao G, Cai W, Zhu L, et al. N-Doped carbon nanotubes decorated with Fe/Ni sites to stabilize lithium metal anodes[J]. Inorganic Chemistry Frontiers,2020,7(15):2747-2752. doi: 10.1039/D0QI00501K
    [87]
    Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie,2017,56(27):7764-7768. doi: 10.1002/anie.201702099
    [88]
    Ojha K, Kumar B, Ganguli A K. Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors[J]. Journal of Chemical Sciences,2017,129(3):397-404. doi: 10.1007/s12039-017-1248-8
    [89]
    Liu H, Chen X, Cheng X B, et al. Uniform Lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries[J]. Small Methods,2018,3(9):1800354. doi: DOI.org/10.1002/smtd.201800354
    [90]
    Chen F, Yang J, Bai T, et al. Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries[J]. Journal of Electroanalytical Chemistry,2016,768:18-26. doi: 10.1016/j.jelechem.2016.02.035
    [91]
    Zhou X, Chen F, Bai T, et al. Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries[J]. Green Chemistry,2016,18(7):2078-2088. doi: 10.1039/C5GC02122G
    [92]
    Wang H, Xu Z W, Kohandehghan A, et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy[J]. ACS Nano,2013,7(6):5131-5141. doi: 10.1021/nn400731g
    [93]
    Sun L, Tian C, Li M, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors[J]. Journal of Materials Chemistry A,2013,1(21):6462-6470. doi: 10.1039/c3ta10897j
    [94]
    Tian W Q, Gao Q M, Tan Y L, et al. Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor[J]. Carbon,2017,119:287-295. doi: 10.1016/j.carbon.2017.04.050
    [95]
    Kannan A G, Samuthirapandian A, Kim D-W. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance[J]. Journal of Power Sources,2017,337:65-72. doi: 10.1016/j.jpowsour.2016.10.109
    [96]
    Wang J, Yang Z, Pan F, et al. Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries[J]. RSC Advances,2015,5(68):55136-55142. doi: 10.1039/C5RA08148C
    [97]
    Zhang X, Liu R R, Zang Y P, et al. Shrimp-shell derived carbon nanodots as precursors to fabricate Fe, N-doped porous graphitic carbon electrocatalysts for efficient oxygen reduction in zinc-air batteries[J]. Inorganic Chemistry Frontiers,2016,3(7):910-918. doi: 10.1039/C6QI00059B
    [98]
    Tao X Y, Wu R, Xia Y, et al. Biotemplated fabrication of Sn@C anode materials based on the unique metal biosorption behavior of microalgae[J]. ACS Applied Materials & Interfaces,2014,6(5):3696-3702. doi: DOI.org/10.1021/am500020e
    [99]
    Puig A, Perez-Munuera I, Carcel J A, et al. Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L. ) during conventional and ultrasonically assisted convective drying[J]. Food and Bioproducts Processing,2012,90(4):624-632. doi: 10.1016/j.fbp.2012.07.001
    [100]
    Jin C B, Sheng O W, Luo J M, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy,2017,37:177-186. doi: 10.1016/j.nanoen.2017.05.015
    [101]
    Jin C B, Sheng O W, Zhang W K, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Materials,2018,15:218-225. doi: 10.1016/j.ensm.2018.04.001
    [102]
    Bi Z, Kong Q, Cao Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review[J]. Journal of Materials Chemistry A,2019,7(27):16028-16045. doi: 10.1039/C9TA04436A
    [103]
    Seo J K, Cho H-M, Takahara K, et al. Revisiting the conversion reaction voltage and the reversibility of the CuF2 electrode in Li-ion batteries[J]. Nano Research,2017,10(12):4232-4244. doi: 10.1007/s12274-016-1365-6
    [104]
    Tian X, Ma H, Li Z, et al. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors[J]. Journal of Power Sources,2017,359:88-96. doi: 10.1016/j.jpowsour.2017.05.054
    [105]
    Zhu G, Ma L, Lv H, et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors[J]. Nanoscale,2017,9(3):1237-1243. doi: 10.1039/C6NR08139H
    [106]
    Fan Y, Liu P, Zhu B, et al. Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors[J]. International Journal of Hydrogen Energy,2015,40(18):6188-6196. doi: 10.1016/j.ijhydene.2015.03.090
    [107]
    Sun F, Gao J, Zhu Y, et al. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode[J]. Scientific Reports,2017,7(1):40990. doi: 10.1038/srep40990
    [108]
    Liang T, Chen C, Li X, et al. Popcorn-derived porous carbon for energy storage and CO2 capture[J]. Langmuir,2016,32(32):8042-8049. doi: 10.1021/acs.langmuir.6b01953
    [109]
    Liu C, Han G, Chang Y, et al. Properties of porous carbon derived from cornstalk core in high-performance electrochemical capacitors[J]. ChemElectroChem,2016,3(2):323-331. doi: 10.1002/celc.201500376
    [110]
    Qiu X, Wang L, Zhu H, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon[J]. Nanoscale,2017,9(22):7408-7418. doi: 10.1039/C7NR02628E
    [111]
    Song H, Chen X, Zheng G, et al. Dendrite-free composite Li anode assisted by Ag nanoparticles in a wood-derived carbon frame[J]. ACS Applied Materials & interfaces,2019,11(20):18361-18367. doi: DOI.org/10.1021/acsami.9b01694
    [112]
    Zhang Y, Luo W, Wang C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences,2017,114(14):3584-3589. doi: 10.1073/pnas.1618871114
    [113]
    Wang H S, Lin D C, Xie J, et al. An interconnected channel‐like framework as host for lithium metal composite anodes[J]. Advanced Energy Materials,2019,9(7):1802720. doi: 10.1002/aenm.201802720
    [114]
    Jin C B, Sheng O W, Lu Y, et al. Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA/cm2[J]. Nano Energy,2018,45:203-209. doi: 10.1016/j.nanoen.2017.12.055
    [115]
    Zhang R, Shen X, Wang J, et al. Plating of Li ions in 3D structured lithium metal anodes[J]. CIESC Journal,2020,71(6):2688-2695. doi: 10.11949/0438-1157.20200120
    [116]
    Shi F, Pei A, Vailionis A, et al. Strong texturing of lithium metal in batteries[J]. Proceedings of the National Academy of Sciences,2017,114(46):12138-12143. doi: 10.1073/pnas.1708224114
    [117]
    Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances,2019,5(2):eaau7728. doi: 10.1126/sciadv.aau7728
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(1568) PDF Downloads(227) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return