Volume 37 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
WU Yu-han, WU Xiao-nan, GUAN Yin-yan, XU Yang, SHI Fa-nian, LIANG Ji-yan. Carbon-based flexible electrodes for electrochemical potassium storage. New Carbon Mater., 2022, 37(5): 852-874. doi: 10.1016/S1872-5805(22)60631-0
Citation: WU Yu-han, WU Xiao-nan, GUAN Yin-yan, XU Yang, SHI Fa-nian, LIANG Ji-yan. Carbon-based flexible electrodes for electrochemical potassium storage. New Carbon Mater., 2022, 37(5): 852-874. doi: 10.1016/S1872-5805(22)60631-0

Carbon-based flexible electrodes for electrochemical potassium storage

doi: 10.1016/S1872-5805(22)60631-0
More Information
  • Corresponding author: WU Yu-han, Ph.D. E-mail: yuhanwu@sut.edu.cn; GUAN Yin-yan, Associate Professor. E-mail: guanyinyan@sut.edu.cn; XU Yang, Assistant Professor. E-mail: y.xu.1@ucl.ac.uk
  • Received Date: 2022-07-01
  • Rev Recd Date: 2022-07-26
  • Available Online: 2022-07-28
  • Publish Date: 2022-10-01
  • With the rapid growth of the flexible and wearable electronics market, there have been big advances in flexible electrochemical energy storage technologies. Developing flexible electrodes with a low cost, superior safety, and high performance remains a great challenge. In recent years, potassium-based electrochemical energy storage devices have received much attention by virtue of their cost competitiveness and the availability of potassium resources. Carbon materials have been widely used as electrode materials or substrates for flexible energy storage devices due to their excellent properties, such as low weight, non-toxicity and abundance. Here, we summarize the recent advances in carbon materials (e.g. carbon nanofibers, carbon nanotubes, and graphene) for use in flexible electrochemical potassium storage devices, including potassium-ion batteries, potassium-ion hybrid capacitors, and K-S/Se batteries. Strategies for the synthesis of carbon-based flexible electrodes and their reported electrochemical performance are outlined. Finally, the challenges of future developments in this field are discussed.
  • loading
  • [1]
    Jagadale A, Zhou X, Xiong R, et al. Lithium ion capacitors (LICs): Development of the materials[J]. Energy Storage Materials,2019,19:314-329. doi: 10.1016/j.ensm.2019.02.031
    [2]
    Boaretto N, Garbayo I, Valiyaveettil-SobhanRaj S, et al. Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing[J]. Journal of Power Sources,2021,502:229919. doi: 10.1016/j.jpowsour.2021.229919
    [3]
    Qi F, Sun Z, Fan X, et al. Tunable interaction between metal‐organic frameworks and electroactive components in lithium–sulfur batteries: Status and perspectives[J]. Advanced Energy Materials,2021,11(20):2100387. doi: 10.1002/aenm.202100387
    [4]
    Eftekhari A. The rise of lithium–selenium batteries[J]. Sustainable Energy & Fuels,2017,1(1):14-29.
    [5]
    Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews,2014,114(23):11636-11682. doi: 10.1021/cr500192f
    [6]
    Yang S, Zhang F, Ding H, et al. Lithium metal extraction from seawater[J]. Joule,2018,2(9):1648-1651. doi: 10.1016/j.joule.2018.07.006
    [7]
    Li T, Zhao H, Li C X, et al. Recent progress and prospects in anode materials for potassium-ion capacitors[J]. New Carbon Materials,2021,36(2):253-277. doi: 10.1016/S1872-5805(21)60019-7
    [8]
    Vijaya Kumar Saroja A P, Xu Y. Carbon materials for Na-S and K-S batteries[J]. Matter,2022,5(3):808-836. doi: 10.1016/j.matt.2021.12.023
    [9]
    Zhou J, Liu Y, Zhang S, et al. Metal chalcogenides for potassium storage[J]. InfoMat,2020,2(3):437-465. doi: 10.1002/inf2.12101
    [10]
    Wang W, Zhou J, Wang Z, et al. Short-range order in mesoporous carbon boosts potassium-ion battery performance[J]. Advanced Energy Materials,2018,8(5):1701648. doi: 10.1002/aenm.201701648
    [11]
    Hosaka T, Kubota K, Hameed A S, et al. Research development on K-ion batteries[J]. Chemical Reviews,2020,120(14):6358-6466. doi: 10.1021/acs.chemrev.9b00463
    [12]
    Kubota K, Dahbi M, Hosaka T, et al. Towards K-ion and Na-ion batteries as "beyond Li-ion"[J]. The Chemical Record,2018,18(4):459-479. doi: 10.1002/tcr.201700057
    [13]
    Qiu W, Xiao H, Li Y, et al. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder‐free anode for flexible advanced potassium ion full batteries[J]. Small,2019,15(23):1901285.
    [14]
    Wang L, Bao J, Liu Q, et al. Concentrated electrolytes unlock the full energy potential of potassium-sulfur battery chemistry[J]. Energy Storage Materials,2019,18:470-475. doi: 10.1016/j.ensm.2018.10.004
    [15]
    Zhang T, Mao Z, Shi X, et al. Tissue-derived carbon microbelt paper: A high-initial-coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors[J]. Energy & Environmental Science,2022,15(1):158-168.
    [16]
    Wu Y, Zhang C, Zhao H, et al. Recent advances in ferromagnetic metal sulfides and selenides as anodes for sodium- and potassium-ion batteries[J]. Journal of Materials Chemistry A,2021,9(15):9506-9534. doi: 10.1039/D1TA00831E
    [17]
    Yang G, Wu Y, Fu Q, et al. Nanostructured metal selenides as anodes for potassium-ion batteries[J]. Sustainable Energy & Fuels,2022,6(9):2087-2112.
    [18]
    Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects[J]. Energy & Environmental Science,2014,7(4):1307-1338.
    [19]
    Li H, Zhang X, Zhao Z, et al. Flexible sodium-ion based energy storage devices: Recent progress and challenges[J]. Energy Storage Materials,2020,26:83-104. doi: 10.1016/j.ensm.2019.12.037
    [20]
    Wang D K, Zhang J K, Dong Y, et al. Progress on graphitic carbon materials for potassium-based energy storage[J]. New Carbon Materials,2021,36(3):435-448. doi: 10.1016/S1872-5805(21)60039-2
    [21]
    Li X, Wang X Y, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36(1):106-116. doi: 10.1016/S1872-5805(21)60008-2
    [22]
    Wen L, Li F, Cheng H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices[J]. Advanced Materials,2016,28(22):4306-4337. doi: 10.1002/adma.201504225
    [23]
    Peng S, Wang L, Zhu Z, et al. Electrochemical performance of reduced graphene oxide/carbon nanotube hybrid papers as binder-free anodes for potassium-ion batteries[J]. Journal of Physics and Chemistry of Solids,2020,138:109296. doi: 10.1016/j.jpcs.2019.109296
    [24]
    Xie X, Zhao M Q, Anasori B, et al. Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy,2016,26:513-523. doi: 10.1016/j.nanoen.2016.06.005
    [25]
    Li W, Yang Z, Jiang Y, et al. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries[J]. Carbon,2014,78:455-462. doi: 10.1016/j.carbon.2014.07.026
    [26]
    Li D, Dai L, Ren X, et al. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers[J]. Energy & Environmental Science,2021,14(1):424-436.
    [27]
    Zhou C, Fan S, Hu M, et al. High areal specific capacity of Ni3V2O8/carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries[J]. Journal of Materials Chemistry A,2017,5(30):15517-15524. doi: 10.1039/C7TA04337F
    [28]
    Long B, Zhang J, Luo L, et al. High pseudocapacitance boosts the performance of monolithic porous carbon cloth/closely packed TiO2 nanodots as an anode of an all-flexible sodium-ion battery[J]. Journal of Materials Chemistry A,2019,7(6):2626-2635. doi: 10.1039/C8TA09678C
    [29]
    Chang S, Pu J, Wang J, et al. Electrochemical fabrication of monolithic electrodes with core/shell sandwiched transition metal oxide/oxyhydroxide for high-performance energy storage[J]. ACS Applied Materials & Interfaces,2016,8(39):25888-25895.
    [30]
    Zhang H, Ning H, Busbee J, et al. Electroplating lithium transition metal oxides[J]. Science Advances,2017,3(5):e1602427. doi: 10.1126/sciadv.1602427
    [31]
    Ahmad S, Copic D, George C, et al. Hierarchical assemblies of carbon nanotubes for ultraflexible Li-ion batteries[J]. Advanced Materials,2016,28(31):6705-6710. doi: 10.1002/adma.201600914
    [32]
    Pan Z, Ren J, Guan G, et al. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries[J]. Advanced Energy Materials,2016,6(11):1600271. doi: 10.1002/aenm.201600271
    [33]
    Xiao X, Li T, Peng Z, et al. Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors[J]. Nano Energy,2014,6:1-9. doi: 10.1016/j.nanoen.2014.02.014
    [34]
    Xiao X, Peng X, Jin H, et al. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors[J]. Advanced Materials,2013,25(36):5091-5097. doi: 10.1002/adma.201301465
    [35]
    Zeng C, Xie F, Yang X, et al. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage[J]. Angewandte Chemie International Edition,2018,57(28):8540-8544. doi: 10.1002/anie.201803511
    [36]
    Inagaki M, Yang Y, Kang F. Carbon nanofibers prepared via electrospinning[J]. Advanced Materials,2012,24(19):2547-2566. doi: 10.1002/adma.201104940
    [37]
    Tian Z, Chui N, Lian R, et al. Dual anionic vacancies on carbon nanofiber threaded mosse arrays: A free-standing anode for high-performance potassium-ion storage[J]. Energy Storage Materials,2020,27:591-598. doi: 10.1016/j.ensm.2019.12.016
    [38]
    Qiu H, Zhao L, Asif M, et al. SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries[J]. Energy & Environmental Science,2020,13(2):571-578.
    [39]
    Atangana Etogo C, Huang H, Hong H, et al. Metal-organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage[J]. Energy Storage Materials,2020,24:167-176. doi: 10.1016/j.ensm.2019.08.022
    [40]
    Suo G, Zhang J, Li D, et al. Flexible n doped carbon/bubble-like MoS2 core/sheath framework: Buffering volume expansion for potassium ion batteries[J]. Journal of Colloid and Interface Science,2020,566:427-433. doi: 10.1016/j.jcis.2020.01.113
    [41]
    Gao M R, Xu Y F, Jiang J, et al. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices[J]. Chemical Society Reviews,2013,42(7):2986-3017. doi: 10.1039/c2cs35310e
    [42]
    Pu J, Shen Z, Zhong C, et al. Electrodeposition technologies for Li-based batteries: New frontiers of energy storage[J]. Advanced Materials,2020,32(27):1903808.
    [43]
    Yu Q, Jiang B, Hu J, et al. Metallic octahedral CoSe2 threaded by n-doped carbon nanotubes: A flexible framework for high-performance potassium-ion batteries[J]. Advanced Science,2018,5(10):1800782. doi: 10.1002/advs.201800782
    [44]
    Ren W, Wang C, Lu L, et al. SnO2@Si core–shell nanowire arrays on carbon cloth as a flexible anode for Li ion batteries[J]. Journal of Materials Chemistry A,2013,1(43):13433-13438. doi: 10.1039/c3ta11943b
    [45]
    Suo G, Zhang J, Li D, et al. N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage[J]. Chemical Engineering Journal,2020,388:124396. doi: 10.1016/j.cej.2020.124396
    [46]
    Hwang J Y, El-Kady M F, Wang Y, et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage[J]. Nano Energy,2015,18:57-70. doi: 10.1016/j.nanoen.2015.09.009
    [47]
    Wan F, Huang S, Cao H, et al. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries[J]. ACS Nano,2020,14(6):6752-6760. doi: 10.1021/acsnano.9b10214
    [48]
    Yuan X, Zhu B, Feng J, et al. Free-standing, flexible and stable potassium–sulfur battery enabled by controllable porous carbon cloth[J]. Journal of Power Sources,2020,480:228874. doi: 10.1016/j.jpowsour.2020.228874
    [49]
    Zhao X, Xiong P, Meng J, et al. High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries[J]. Journal of Materials Chemistry A,2017,5(36):19237-19244. doi: 10.1039/C7TA04264G
    [50]
    Xu Y, Yuan T, Zhao Y, et al. Constructing multichannel carbon fibers as freestanding anodes for potassium‐ion battery with high capacity and long cycle life[J]. Advanced Materials Interfaces,2019,7(3):1901829.
    [51]
    Yang W, Zhou J, Wang S, et al. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage[J]. Energy & Environmental Science,2019,12(5):1605-1612.
    [52]
    Wu Y, Xu R, Wang Z, et al. Carbon-free crystal-like Fe1-xS as an anode for potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2021,13(46):55218-55226.
    [53]
    Wu Y, Zhang Q, Xu Y, et al. Enhanced potassium storage capability of two-dimensional transition-metal chalcogenides enabled by a collective strategy[J]. ACS Applied Materials & Interfaces,2021,13(16):18838-18848. doi: 10.1021/acsami.1c01891
    [54]
    Lao M, Zhang Y, Luo W, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials,2017,29(48):1700622. doi: 10.1002/adma.201700622
    [55]
    Song K, Liu C, Mi L, et al. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries[J]. Small,2021,17(9):1903194. doi: 10.1002/smll.201903194
    [56]
    Ge X, Liu S, Qiao M, et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers[J]. Angewandte Chemie International Edition,2019,58(41):14578-14583. doi: 10.1002/anie.201908918
    [57]
    Jin T, Li H, Li Y, et al. Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage[J]. Nano Energy,2018,50:462-467. doi: 10.1016/j.nanoen.2018.05.056
    [58]
    Dai J, Su D, Yang J, et al. A flexible Mn0.5Ti2(PO4)3/C nanofiber film with superior cycling stability for potassium-ion batteries[J]. Nanoscale,2021,13(47):19956-19965. doi: 10.1039/D1NR04735C
    [59]
    Yi Z, Liu Y, Li Y, et al. Flexible membrane consisting of MoP ultrafine nanoparticles highly distributed inside N and P codoped carbon nanofibers as high-performance anode for potassium-ion batteries[J]. Small,2020,16(2):1905301. doi: 10.1002/smll.201905301
    [60]
    Sehrawat P, Julien C, Islam S S. Carbon nanotubes in Li-ion batteries: A review[J]. Materials Science and Engineering: B,2016,213:12-40. doi: 10.1016/j.mseb.2016.06.013
    [61]
    Li X, Zhuang C, Xu J, et al. Rational construction of K0.5V2O5 nanobelts/CNTs flexible cathode for multi-functional potassium-ion batteries[J]. Nanoscale,2021,13(17):8199-8209. doi: 10.1039/D1NR00993A
    [62]
    Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9-10):351-355. doi: 10.1016/j.ssc.2008.02.024
    [63]
    Ojha R P, Lemieux P A, Dixon P K, et al. Statistical mechanics of a gas-fluidized particle[J]. Nature,2004,427(6974):521-523. doi: 10.1038/nature02294
    [64]
    Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [65]
    Lv W, Li Z, Deng Y, et al. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges[J]. Energy Storage Materials,2016,2:107-138. doi: 10.1016/j.ensm.2015.10.002
    [66]
    Chen K, Song S, Liu F, et al. Structural design of graphene for use in electrochemical energy storage devices[J]. Chemical Society Reviews,2015,44(17):6230-6257. doi: 10.1039/C5CS00147A
    [67]
    Zhang Z, Wu C, Chen Z, et al. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage[J]. Journal of Materials Chemistry A,2020,8(6):3369-3378. doi: 10.1039/C9TA12191A
    [68]
    Zeng L, Liu M, Li P, et al. A high-volumetric-capacity bismuth nanosheet/graphene electrode for potassium ion batteries[J]. Science China Materials,2020,63(10):1920-1928. doi: 10.1007/s40843-020-1493-1
    [69]
    Zeng S, Chen X, Xu R, et al. Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms[J]. Nano Energy,2020,73:104807. doi: 10.1016/j.nanoen.2020.104807
    [70]
    Zhang H, Huang Y, Ming H, et al. Recent advances in nanostructured carbon for sodium-ion batteries[J]. Journal of Materials Chemistry A,2020,8(4):1604-1630. doi: 10.1039/C9TA09984K
    [71]
    Chen Y, Lu Z, Zhou L, et al. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries[J]. Nanoscale,2012,4(21):6800-6805. doi: 10.1039/c2nr31557b
    [72]
    Chen D, Huang Z, Sun S, et al. A flexible multi-channel hollow CNT/carbon nanofiber composites with S/N co-doping for sodium/potassium ion energy storage[J]. ACS Applied Materials & Interfaces,2021,13(37):44369-44378.
    [73]
    Niu P, Wang P, Xu Y, et al. Tuning the electronic conductivity of porous nitrogen-doped carbon nanofibers with graphene for high-performance potassium-ion storage[J]. Inorganic Chemistry Frontiers,2021,8(16):3926-3933. doi: 10.1039/D1QI00664A
    [74]
    Adams R A, Syu J M, Zhao Y, et al. Binder-free N- and O-rich carbon nanofiber anodes for long cycle life K-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(21):17872-17881.
    [75]
    Zhang M, Shoaib M, Fei H, et al. Hierarchically porous n‐doped carbon fibers as a free‐standing anode for high‐capacity potassium‐based dual‐ion battery[J]. Advanced Energy Materials,2019,9(37):1901663. doi: 10.1002/aenm.201901663
    [76]
    Sun H, Zhu W, Yuan F, et al. Hierarchical porous carbon nanofibers with enhanced capacitive behavior as a flexible self-supporting anode for boosting potassium storage[J]. Journal of Power Sources,2022,523:231043. doi: 10.1016/j.jpowsour.2022.231043
    [77]
    Cao K, Liu H, Jia Y, et al. Flexible antimony@carbon integrated anode for high‐performance potassium‐ion battery[J]. Advanced Materials Technologies,2020,5(6):2000199. doi: 10.1002/admt.202000199
    [78]
    Mao M, Cui C, Wu M, et al. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery[J]. Nano Energy,2018,45:346-352. doi: 10.1016/j.nanoen.2018.01.001
    [79]
    Zhu X, Gao J, Li J, et al. Self-supporting N-rich Cu2Se/C nanowires for highly reversible, long-life potassium-ion storage[J]. Sustainable Energy & Fuels,2020,4(5):2453-2461.
    [80]
    Sun H, Su Y, Yuan F, et al. Fe2P nanoparticles-doped carbon nanofibers with enhanced electrons transfer capability as a self-supporting anode for potassium-ion battery[J]. Electrochimica Acta,2022,404:139759. doi: 10.1016/j.electacta.2021.139759
    [81]
    Li X, Sun N, Tian X, et al. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries[J]. Energy & Fuels,2020,34(2):2445-2451.
    [82]
    Yao G, Lin M, Yang J, et al. Stabilizing V2O3 in carbon nanofiber flexible films for ultrastable potassium storage[J]. Inorganic Chemistry Frontiers,2022,9(7):1434-1445. doi: 10.1039/D1QI01611C
    [83]
    Zhao Y, Ruan J, Luo S, et al. Rational construction of a binder-free and universal electrode for stable and fast alkali-ion storage[J]. ACS Applied Materials & Interfaces,2019,11(43):40006-40013.
    [84]
    Zhang E, Jia X, Wang B, et al. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode[J]. Advanced Science,2020,7(15):2000470. doi: 10.1002/advs.202000470
    [85]
    Yang Z, Li W, Zhang G, et al. Constructing Sb–O–C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries[J]. Nano Energy,2022,93:106764. doi: 10.1016/j.nanoen.2021.106764
    [86]
    Shen C, Yuan K, Tian T, et al. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(5):5015-5021.
    [87]
    Huang Z, Ding S, Li P, et al. Flexible Sb-graphene-carbon nanofibers as binder-free anodes for potassium-ion batteries with enhanced properties[J]. Nanotechnology,2021,32(2):025401. doi: 10.1088/1361-6528/abbb4d
    [88]
    Han J, Zhu K, Liu P, et al. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries[J]. Journal of Materials Chemistry A,2019,7(44):25268-25273. doi: 10.1039/C9TA09643D
    [89]
    Li P, Wang W, Gong S, et al. Hydrogenated Na2Ti3O7 epitaxially grown on flexible N-doped carbon sponge for potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(44):37974-37980.
    [90]
    Zeng S, Zhou X, Wang B, et al. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries[J]. Journal of Materials Chemistry A,2019,7(26):15774-15781. doi: 10.1039/C9TA03245B
    [91]
    Cao B, Liu H, Zhang P, et al. Flexible mxene framework as a fast electron/potassium‐ion dual‐function conductor boosting stable potassium storage in graphite electrodes[J]. Advanced Functional Materials,2021,31(32):2102126. doi: 10.1002/adfm.202102126
    [92]
    Wang D, Du G, Han D, et al. Porous flexible nitrogen-rich carbon membranes derived from chitosan as free-standing anodes for potassium-ion and sodium-ion batteries[J]. Carbon,2021,181:1-8. doi: 10.1016/j.carbon.2021.05.021
    [93]
    Sun Y, Zhang Y, Xing Z, et al. A hollow neuronal carbon skeleton with ultrahigh pyridinic n content as a self-supporting potassium-ion battery anode[J]. Sustainable Energy & Fuels,2020,4(3):1216-1224.
    [94]
    Yang Y, Wang L, Zeng S, et al. FeP coated in nitrogen/phosphorus co-doped carbon shell nanorods arrays as high-rate capable flexible anode for K-ion half/full batteries[J]. Journal of Colloid and Interface Science,2022,624:670-679. doi: 10.1016/j.jcis.2022.05.129
    [95]
    Li N, Jiang Z, Wu X, et al. An interface-free integrative graphitic carbon network film with defective and S/O-codoped hollow units for voltage-stable, ultra-fast and long-life potassium ion storage[J]. Chemical Engineering Journal,2022,431:133736. doi: 10.1016/j.cej.2021.133736
    [96]
    Zhang Y, Jiang J, An Y, et al. Sodium-ion capacitors: Materials, mechanism, and challenges[J]. ChemSusChem,2020,13(10):2522-2539. doi: 10.1002/cssc.201903440
    [97]
    Hu X, Zhong G, Li J, et al. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor[J]. Energy & Environmental Science,2020,13(8):2431-2440.
    [98]
    Yan D, Han B, Wang Z, et al. Engineered phase of nickel sulfides inside hairy hollow fibers towards high-performance anodes for flexible potassium ion hybrid capacitors[J]. Journal of Materials Chemistry A,2022,10(10):5569-5579. doi: 10.1039/D2TA00164K
    [99]
    Chen M, Wang L, Sheng X, et al. An ultrastable nonaqueous potassium‐ion hybrid capacitor[J]. Advanced Functional Materials,2020,30(40):2004247. doi: 10.1002/adfm.202004247
    [100]
    Jia M, Tian S, Yin G, et al. Hollow MoS2 spheres confined in carbon fibers for ultralong-life potassium storage[J]. ACS Applied Energy Materials,2022,5(3):3605-3614. doi: 10.1021/acsaem.1c04101
    [101]
    Luo Z, Zhang Q, Xie W, et al. B, F co-doping flexible carbon nanofibers as a fast and stable anode for potassium-ion hybrid capacitor[J]. Journal of Alloys and Compounds,2022,914:165285. doi: 10.1016/j.jallcom.2022.165285
    [102]
    Xiong Q, He H, Zhang M. Design of flexible films based on kinked carbon nanofibers for high rate and stable potassium-ion storage[J]. Nano-Micro Letters,2022,14(1):1-17. doi: 10.1007/s40820-021-00751-y
    [103]
    Wang D, Wang P, Lu B, et al. Porous carbon tubes constructing freestanding flexible electrodes for symmetric potassium-ion hybrid capacitors[J]. ACS Applied Energy Materials,2021,4(12):13593-13604. doi: 10.1021/acsaem.1c02211
    [104]
    Li X, Li D, Cai J, et al. Kinetically boosted potassium ion storage capability of 1D K2Ti6O13 nanobelts by 3D porous carbon framework for fiber-shaped potassium ion capacitors[J]. Journal of Power Sources,2022,533:231419. doi: 10.1016/j.jpowsour.2022.231419
    [105]
    Yan D, Xie M, Shao Y, et al. Fast and durable anodes for sodium-/potassium-ion hybrid capacitors: Tailoring self-adaptive nanocages inside hybrid fibers with high alignment[J]. Journal of Materials Chemistry A,2021,9(24):13986-13995. doi: 10.1039/D1TA02846D
    [106]
    Wei S, Deng X, Kundu M, et al. Bead‐like coal‐derived carbon anodes for high performance potassium‐ion hybrid capacitors[J]. ChemElectroChem,2022,9(9):e202101715.
    [107]
    Ma R, Fan L, Wang J, et al. Confined and covalent sulfur for stable room temperature potassium-sulfur battery[J]. Electrochimica Acta,2019,293:191-198. doi: 10.1016/j.electacta.2018.10.040
    [108]
    Huang X L, Guo Z, Dou S X, et al. Rechargeable potassium–selenium batteries[J]. Advanced Functional Materials,2021,31(29):2102326. doi: 10.1002/adfm.202102326
    [109]
    Yao Y, Chen M, Xu R, et al. CNT interwoven nitrogen and oxygen dual-doped porous carbon nanosheets as free-standing electrodes for high-performance Na-Se and K-Se flexible batteries[J]. Advanced Materials,2018,30(49):1805234. doi: 10.1002/adma.201805234
    [110]
    Huang X, Deng J, Qi Y, et al. A highly-effective nitrogen-doped porous carbon sponge electrode for advanced K-Se batteries[J]. Inorganic Chemistry Frontiers,2020,7(5):1182-1189. doi: 10.1039/C9QI01506J
    [111]
    Li D, Wang L, Cheng X, et al. Manipulating selenium molecular configuration in N/O dual-doped porous carbon for high performance potassium-ion storage[J]. Journal of Energy Chemistry,2021,62:581-589. doi: 10.1016/j.jechem.2021.04.006
    [112]
    Yuan X, Zhu B, Feng J, et al. High-performance stable potassium–sulfur batteries enabled by free-standing cnt film-based composite cathodes[J]. Journal of Electronic Materials,2021,50(6):3037-3042. doi: 10.1007/s11664-021-08823-w
    [113]
    Xu R, Yao Y, Wang H, et al. Unraveling the nature of excellent potassium storage in small-molecule Se@peapod-like N-doped carbon nanofibers[J]. Advanced Materials,2020,32(52):2003879. doi: 10.1002/adma.202003879
    [114]
    Liu Q, Deng W, Pan Y, et al. Approaching the voltage and energy density limits of potassium–selenium battery chemistry in a concentrated ether-based electrolyte[J]. Chemical Science,2020,11(23):6045-6052. doi: 10.1039/D0SC01474E
    [115]
    Yao Y, Xu R, Chen M, et al. Encapsulation of SeS2 into nitrogen-doped free-standing carbon nanofiber film enabling long cycle life and high energy density K-SeS2 battery[J]. ACS Nano,2019,13(4):4695-4704. doi: 10.1021/acsnano.9b00980
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article Views(860) PDF Downloads(161) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return