Turn off MathJax
Article Contents
SONG Jiu-peng, ZHAO Yan, LI Xue-kuan, XIONG Shu, LI Shuang, WANG Kai. Synergistic enhancement of toughness and viscosity of carbon nanotubes/polyether imide/polyether ether ketone nanocomposites. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60643-7
Citation: SONG Jiu-peng, ZHAO Yan, LI Xue-kuan, XIONG Shu, LI Shuang, WANG Kai. Synergistic enhancement of toughness and viscosity of carbon nanotubes/polyether imide/polyether ether ketone nanocomposites. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60643-7

Synergistic enhancement of toughness and viscosity of carbon nanotubes/polyether imide/polyether ether ketone nanocomposites

doi: 10.1016/S1872-5805(22)60643-7
More Information
  • Author Bio:

    宋九鹏,博士研究生. E-mail:buaajiupeng@126.com

  • Corresponding author: ZHAO Yan. E-mail: jennyzhaoyan@buaa.edu.cn
  • Received Date: 2022-05-13
  • Rev Recd Date: 2022-08-02
  • Available Online: 2022-08-23
  • Polyether ether ketone (PEEK) has favorable mechanical properties. However, its high melt viscosity limits its applications because it is hard to process. In this study, PEEK nanocomposites modified with carbon nanotubes (CNTs) and polyether imide (PEI) were prepared using a direct wet powder blending method. The melt viscosity of the nanocomposites decreased by approximately 50%. Under optimal conditions, the addition of CNTs and PEI resulted in a synergistic increase in the toughness of the nanocomposites. The elongation at break increased by 129%, and the fracture energy increased by 97%. The uniformly dispersed CNTs/PEI powder reduces the processing difficulty of PEEK nanocomposites without affecting the heat resistance. The nanocomposites prepared by this method have lower melt viscosity. This improvement of the properties of PEEK would facilitate its use in the preparation of thermoplastic composites by powder impregnation or laser sintering technology.
  • loading
  • [1]
    Yao S, Jin F, K Rhee, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B:Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007
    [2]
    Avanzini A, Petrogalli C, Battini D, et al. Influence of micro-notches on the fatigue strength and crack propagation of unfilled and short carbon fiber reinforced PEEK[J]. Materials & Design,2018,139:447-456.
    [3]
    Tao Y, Kong F, Li Z, et al. A review on voids of 3D printed parts by fused filament fabrication[J]. Journal of Materials Research and Technology,2021,15:4860-4879. doi: 10.1016/j.jmrt.2021.10.108
    [4]
    Su Y, Zhang X, Jing D, et al. Effect of surface functionalization on the surface and inter-facial properties of thermoplastic-coated carbon fibers[J]. New Carbon Materials,2021,36(6):1169-1176. doi: 10.1016/S1872-5805(21)60049-5
    [5]
    Papageorgiou D, Liu M, Li Z, et al. Hybrid poly(ether ether ketone) composites reinforced with a combination of carbon fibres and graphene nanoplatelets[J]. Composites Science and Technology,2019,175:60-68. doi: 10.1016/j.compscitech.2019.03.006
    [6]
    Nandan B, L. Kandpal L, Mathur G. Poly(ether ether ketone)/poly(aryl ether sulfone) blends: Melt rheological behavior[J]. Journal of Polymer Science Part B-Polymer Physics,2004,42(8):1548-1563. doi: 10.1002/polb.20039
    [7]
    McLaughlin J, Tobin E, O'Higgins R. An investigation of Polyether Imide (PEI) toughening of carbon fibre-reinforced Polyether Ether Ketone (PEEK) laminates[J]. Materials & Design,2021:110189.
    [8]
    Kumar S, . Mishra R, Nandi T. Experimental and theoretical investigations of the high performance blends of PEEK/PEI[J]. Journal of Polymer Engineering,2017(4):351-361.
    [9]
    Rosa M, Grassia L, D'Amore A, et al. Rheology and Mechanics of Polyether(ether)ketone - Polyetherimide Blends for Composites in Aeronautics[C]//International Conference on Times of Polymers TOP and Composites. 2016.
    [10]
    Gensler R, Béguelin P, Plummer C, et al. Tensile behaviour and fracture toughness of poly(ether ether ketone)/poly(ether imide) blends[J]. Polymer Bulletin,1996,37(1):111-118. doi: 10.1007/BF00313826
    [11]
    Thiruchitrambalam M, Bubesh Kumar D, Shanmugam D, et al. A review on PEEK composites – Manufacturing methods, properties and applications [J]. Materials Today: Proceedings, 2020, 33(1): 1085 - 1092.
    [12]
    Golbang A, Harkin-Jones E, Wegrzyn M, et al. Production and characterization of PEEK/IF-WS2 nanocomposites for additive manufacturing: Simultaneous improvement in processing characteristics and material properties[J]. Additive Manufacturing,2020,31:100920. doi: 10.1016/j.addma.2019.100920
    [13]
    Bragaglia M, Cherubini V, Nanni F. PEEK-TiO2 composites with enhanced UV resistance[J]. Composites Science and Technology,2020,199:108365. doi: 10.1016/j.compscitech.2020.108365
    [14]
    Díez-Pascual A, Naffakh M, Gómez M, et al. Development and characterization of PEEK/carbon nanotube composites[J]. Carbon,2009,47(13):3079-3090. doi: 10.1016/j.carbon.2009.07.020
    [15]
    Díez-Pascual A, Naffakh M, Marco C, et al. Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: A review[J]. Current Opinion in Solid State and Materials Science,2014,18(2):62-80. doi: 10.1016/j.cossms.2013.06.003
    [16]
    Marathe U, Padhan M, Bijwe J. Carbon nanotubes-A powerful nano-filler for enhancing the performance properties of polyetherketoneketone composites and adhesives[J]. Composites Science and Technology,2021,210:108813. doi: 10.1016/j.compscitech.2021.108813
    [17]
    Vahedi F, Shahverdi H, Shokrieh M, et al. Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites[J]. New Carbon Materials,2014,29(6):419-425. doi: 10.1016/S1872-5805(14)60146-3
    [18]
    Chen B, Berretta S, Evans K, et al. A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering[J]. Applied Surface Science,2018,428:1018-1028. doi: 10.1016/j.apsusc.2017.09.226
    [19]
    He M, Chen X, Guo Z, et al. Super tough graphene oxide reinforced polyetheretherketone for potential hard tissue repair applications[J]. Composites Science and Technology,2019,174:194-201. doi: 10.1016/j.compscitech.2019.02.028
    [20]
    Wu N, Che S, Li H, et al. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications[J]. New Carbon Materials,2021,36(5):911-926. doi: 10.1016/S1872-5805(21)60089-6
    [21]
    Sanusi O, Benelfellah A, Hocine N. Clays and carbon nanotubes as hybrid nanofillers in thermoplastic-based nanocomposites–A review[J]. Applied Clay Science,2020,185:105408. doi: 10.1016/j.clay.2019.105408
    [22]
    Coleman J, Khan U, Blau W, et al. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites[J]. Carbon,2006,44(9):1624-1652. doi: 10.1016/j.carbon.2006.02.038
    [23]
    Shabanian M, Hajibeygi M, Roohani M. Synthesis of a novel CNT/polyamide composite containing phosphine oxide groups and its flame retardancy and thermal properties[J]. New Carbon Materials,2015,30(5):397-403. doi: 10.1016/S1872-5805(15)60199-8
    [24]
    Zhang X. Carbon nanotube/polyetheretherketone nanocomposites: mechanical, thermal, and electrical properties[J]. Journal of Composite Materials,2021,55(15):2115-2132. doi: 10.1177/0021998320981134
    [25]
    Ogasawara T, Tsuda T, Takeda N. Stress–strain behavior of multi-walled carbon nanotube/PEEK composites[J]. Composites Science and Technology,2011,71(2):73-78. doi: 10.1016/j.compscitech.2010.10.001
    [26]
    Wang B, Zhang K, Zhou C, et al. Engineering the mechanical properties of CNT/PEEK nanocomposites[J]. Rsc Advances,2019,9(23):12836-12845. doi: 10.1039/C9RA01212E
    [27]
    Wu T, Mei X, Liang L, et al. Structure-function integrated poly (aryl ether ketone)-grafted MWCNTs/poly (ether ether ketone) composites with low percolation threshold of both conductivity and electromagnetic shielding[J]. Composites Science and Technology,2022,217:109032. doi: 10.1016/j.compscitech.2021.109032
    [28]
    Lyu H, Jiang N, Li Y, et al. Enhancing CF/PEEK interfacial adhesion by modified PEEK grafted with carbon nanotubes[J]. Composites Science and Technology,2021,210:108831. doi: 10.1016/j.compscitech.2021.108831
    [29]
    Hassan E, Yang L, Elagib T, et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites Part B:Engineering,2019,171:70-77. doi: 10.1016/j.compositesb.2019.04.015
    [30]
    Lin L, Han Y, Zhao X, et al. Effectively improving the performance of MWNT/PEEK composite by choosing PAK-Cz as the solubilizer[J]. High Performance Polymers,2019,31(8):875-884. doi: 10.1177/0954008318804045
    [31]
    Díez-Pascual A, Martínez G,, Marco C, et al. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles[J]. J Phys Chem B,2012,116(27):7959-69. doi: 10.1021/jp3035314
    [32]
    Díez-Pascual A, Martínez G, Martínez M, et al. Novel nanocomposites reinforced with hydroxylated poly(ether ether ketone)-grafted carbon nanotubes [J]. Journal of Materials Chemistry, 2010, 20: 8247-8256.
    [33]
    Chakoli A, He J, Huang Y. Collagen/aminated MWCNTs nanocomposites for biomedical applications[J]. Materials Today Communications,2018,15:128-133. doi: 10.1016/j.mtcomm.2018.03.003
    [34]
    Ravindran S, Chaudhary S, Colburn B, et al. Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications[J]. Nano Letters,2003,3(4):447-453. doi: 10.1021/nl0259683
    [35]
    Janegitz B, Pauliukaite R, Guica M, et al. Direct electron transfer of glucose oxidase at glassy carbon electrode modified with functionalized carbon nanotubes within a dihexadecylphosphate film [J]. Sensors & Actuators B Chemical, 2011, 158(1): 411-417.
    [36]
    Chen Y, Tao J, Ezzeddine S, et al. Superior Performance Nanocomposites from Uniformly Dispersed Octadecylamine Functionalized Multi-Walled Carbon Nanotubes[J]. C,2015,1(1):58-76.
    [37]
    Mao H, Wang X. Use of in-situ polymerization in the preparation of graphene / polymer nanocomposites[J]. New Carbon Materials,2020,35(4):336-343. doi: 10.1016/S1872-5805(20)60493-0
    [38]
    Disfani M, Jafari S. Assessment of intertube interactions in different functionalized multiwalled carbon nanotubes incorporated in a phenoxy resin[J]. Polymer Engineering and Science,2013,53(1):168-175. doi: 10.1002/pen.23244
    [39]
    Bangarusampath D, Ruckdäschel H, Altstädt V, et al. Rheology and properties of melt-processed poly (ether ether ketone)/multi-wall carbon nanotube composites[J]. Polymer,2009,50(24):5803-5811. doi: 10.1016/j.polymer.2009.09.061
    [40]
    Díez-Pascual A, Naffakh M, González-Domínguez J, et al. High performance PEEK/carbon nanotube composites compatibilized with polysulfones-I. Structure and thermal properties[J]. Carbon,2010,48(12):3485-3499. doi: 10.1016/j.carbon.2010.05.046
    [41]
    Martin A, Lakhera N, DiRienzo A, et al. Amorphous-to-crystalline transition of Polyetheretherketone–carbon nanotube composites via resistive heating[J]. Composites Science and Technology,2013,89:110-119. doi: 10.1016/j.compscitech.2013.09.012
    [42]
    Ekaterina, Pavlenko, Franois, et al. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite[J]. Journal of Applied Physics,2014,115(23):234901-234901. doi: 10.1063/1.4883299
    [43]
    Zhu R, Pan E, Roy A. Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites [J]. Materials Science & Engineering A, 2007, 447: 51-7.
    [44]
    Díez-Pascual A, Díez-Vicente A. High-performance aminated poly(phenylene sulfide)/ZnO nanocomposites for medical applications[J]. ACS Appl Mater Interfaces,2014,6(13):10132-45. doi: 10.1021/am501610p
    [45]
    Díez-Pascual A, Naffakh M, González-Domínguez J, et al. High performance PEEK/carbon nanotube composites compatibilized with polysulfones-II. Mechanical and electrical properties[J]. Carbon,2010,48(12):3500-3511. doi: 10.1016/j.carbon.2010.05.050
    [46]
    Puértolas J, Castro M, Morris J, et al. Tribological and mechanical properties of graphene nanoplatelet/PEEK composites[J]. Carbon,2019,141:107-122. doi: 10.1016/j.carbon.2018.09.036
    [47]
    Bragaglia M, Cherubini V, Nanni F. PEEK -TiO2 composites with enhanced UV resistance[J]. Composites Science and Technology,2020,199:108365. doi: 10.1016/j.compscitech.2020.108365
    [48]
    Arif M, Alhashmi H, Varadarajan K, et al. Multifunctional performance of carbon nanotubes and graphene nanoplatelets reinforced PEEK composites enabled via FFF additive manufacturing[J]. Composites Part B:Engineering,2020,184:107625. doi: 10.1016/j.compositesb.2019.107625
    [49]
    Sun D, Yang C, Qi X, et al. Largely enhanced fracture toughness of the PP/EPDM blends induced by adding carbon nanofibers[J]. Composites Science and Technology,2018,164:146-152. doi: 10.1016/j.compscitech.2018.05.048
    [50]
    Ma H, Aravand M, Falzon B. Synergistic enhancement of fracture toughness in multiphase epoxy matrices modified by thermoplastic and carbon nanotubes[J]. Composites Science and Technology,2021,201:108523. doi: 10.1016/j.compscitech.2020.108523
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article Views(465) PDF Downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return