Volume 37 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
TIAN Zi-shang, WANG Yu-qi, HOU Xiang-lin. Review of chemical recycling and reuse of carbon fiber reinforced epoxy resin composites. New Carbon Mater., 2022, 37(6): 1021-1045. doi: 10.1016/S1872-5805(22)60652-8
Citation: TIAN Zi-shang, WANG Yu-qi, HOU Xiang-lin. Review of chemical recycling and reuse of carbon fiber reinforced epoxy resin composites. New Carbon Mater., 2022, 37(6): 1021-1045. doi: 10.1016/S1872-5805(22)60652-8

Review of chemical recycling and reuse of carbon fiber reinforced epoxy resin composites

doi: 10.1016/S1872-5805(22)60652-8
Funds:  This work was supported financially by the Youth Innovation Promotion Association CAS (2021173) and the National Natural Science Foundation of China (51703237)
More Information
  • Author Bio:

    田梓赏,博士研究生. E-mail:tianzs@sxicc.ac.cn

  • Corresponding author: WANG Yu-qi, Associate Professor. E-mail: wangyuqi@sxicc.ac.cn; HOU Xiang-lin, Professor. E-mail: houxianglin@sxicc.ac.cn
  • Received Date: 2022-07-07
  • Rev Recd Date: 2022-09-14
  • Available Online: 2022-09-21
  • Publish Date: 2022-11-28
  • Carbon fiber-reinforced epoxy resin composites (CFRCs) have been used in the transportation and aerospace fields because of their excellent mechanical properties. The recycling of CFRCs has attracted attention worldwide in recent years. Chemical recycling is a promising method, which can selectively destroy specific resin bonds to achieve controllable degradation. Matrix epoxy resins are degraded into monomers or oligomers, and the high-value carbon fibers can be recycled. First, we summarize progress on chemical recovery methods, mainly super- and subcritical fluids, oxidation, alcoholysis and electrochemical recycling etc. Then, we briefly introduce the synthesis and depolymerization mechanism of recyclable thermosetting resins by the insertion of reversible chemical bonds into the resin to prepare recyclable resins, which is beneficial for the recycling and reuse of components in CFRCs. Finally, possible developments in the chemical recycling of CFRCs and the preparation of high-performance recyclable epoxy resins are proposed.
  • loading
  • [1]
    Navarro C A, Ma Y, Michael K H, et al. Catalytic, aerobic depolymerization of epoxy thermoset composites[J]. Green Chemistry,2021,23(17):6356-6360. doi: 10.1039/D1GC01970H
    [2]
    Hanaoka T, Arao Y, Kayaki Y, et al. New approach to recycling of epoxy resins using nitric acid: regeneration of decomposed products through hydrogenation[J]. ACS Sustainable Chemistry & Engineering,2021,9(37):12520-12529.
    [3]
    Hanaoka T, Ikematsu H, Takahashi S, et al. Recovery of carbon fiber from prepreg using nitric acid and evaluation of recycled CFRP[J]. Composites Part B:Engineering,2022,231:109560. doi: 10.1016/j.compositesb.2021.109560
    [4]
    Zhang J, Chevali V S, Wang H, et al. Current status of carbon fibre and carbon fibre composites recycling[J]. Composites Part B:Engineering,2020,193:108053. doi: 10.1016/j.compositesb.2020.108053
    [5]
    Lefeuvre A, Garnier S, Jacquemin L, et al. Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050[J]. Resources, Conservation & Recycling,2017,125:264-272.
    [6]
    Lefeuvre A, Garnier S, Jacquemin L, et al. Anticipating in-use stocks of carbon fibre reinforced polymers and related waste generated by the wind power sector until 2050[J]. Resources, Conservation & Recycling,2019,141:30-39.
    [7]
    Meng F, Olivetti E A, Zhao Y, et al. Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):9854-9865.
    [8]
    Pickering S J. Recycling technologies for thermoset composite materials-current status[J]. Composites Part A:Applied Science and Manufacturing,2006,37(8):1206-1215. doi: 10.1016/j.compositesa.2005.05.030
    [9]
    Das M, Varughese S. A novel sonochemical approach for enhanced recovery of carbon fiber from CFRP waste using mild acid-peroxide mixture[J]. ACS Sustainable Chemistry & Engineering,2016,4(4):2080-2087.
    [10]
    Ma Y, Nutt S. Chemical treatment for recycling of amine/epoxy composites at atmospheric pressure[J]. Polymer Degradation and Stability,2018,153:307-317. doi: 10.1016/j.polymdegradstab.2018.05.011
    [11]
    Kim K-W, Lee H-M, An J-H, et al. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method[J]. Journal of Environmental Management,2017,203:872-879. doi: 10.1016/j.jenvman.2017.05.015
    [12]
    Rani M, Choudhary P, Krishnan V, et al. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades[J]. Composites Part B:Engineering,2021,215:108768. doi: 10.1016/j.compositesb.2021.108768
    [13]
    Yang J, Liu J, Liu W, et al. Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrations in nitrogen-oxygen atmosphere[J]. Journal of Analytical and Applied Pyrolysis,2015,112:253-261. doi: 10.1016/j.jaap.2015.01.017
    [14]
    Giorgini L, Benelli T, Mazzocchetti L, et al. Pyrolysis as a way to close a CFRC life cycle: carbon fibers recovery and their use as feedstock for a new composite production[J]. Times of Polymers (TOP) and Composites,2014,1599:354-357.
    [15]
    Jiang G, Pickering S J. Structure-property relationship of recycled carbon fibres revealed by pyrolysis recycling process[J]. Journal of Materials Science,2015,51(4):1949-1958.
    [16]
    Nie W, Liu J, Liu W, et al. Decomposition of waste carbon fiber reinforced epoxy resin composites in molten potassium hydroxide[J]. Polymer Degradation and Stability,2015,111:247-256. doi: 10.1016/j.polymdegradstab.2014.12.003
    [17]
    Wu T, Zhan W, Jia X, et al. Solvent-free rapid degradation of epoxy composites and recycling application of high performance carbon fibers through the synergic catalysis effect of molten salts and titanium dioxide[J]. Polymer Degradation and Stability,2022,196:109849. doi: 10.1016/j.polymdegradstab.2022.109849
    [18]
    Wu T, Zhang W, Jin X, et al. Efficient reclamation of carbon fibers from epoxy composite waste through catalytic pyrolysis in molten ZnCl2[J]. RSC Advances,2019,9(1):377-388. doi: 10.1039/C8RA08958B
    [19]
    Kim Y N, Kim Y-O, Kim S Y, et al. Application of supercritical water for green recycling of epoxy-based carbon fiber reinforced plastic[J]. Composites Science and Technology,2019,173:66-72. doi: 10.1016/j.compscitech.2019.01.026
    [20]
    Keith M J, Román-Ramírez L A, Leeke G, et al. Recycling a carbon fibre reinforced polymer with a supercritical acetone/water solvent mixture: comprehensive analysis of reaction kinetics[J]. Polymer Degradation and Stability,2019,161:225-234. doi: 10.1016/j.polymdegradstab.2019.01.015
    [21]
    Okajima I, Sako T. Recycling fiber-reinforced plastic using supercritical acetone[J]. Polymer Degradation and Stability,2019,163:1-6. doi: 10.1016/j.polymdegradstab.2019.02.018
    [22]
    Deng T, Liu Y, Cui X, et al. Cleavage of C–N bonds in carbon fiber/epoxy resin composites[J]. Green Chemistry,2015,17(4):2141-2145. doi: 10.1039/C4GC02512A
    [23]
    Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks[J]. Science,2011,334(6058):965-968. doi: 10.1126/science.1212648
    [24]
    Han J, Liu T, Hao C, et al. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer[J]. Macromolecules,2018,51(17):6789-6799. doi: 10.1021/acs.macromol.8b01424
    [25]
    Cheng H, Huang H, Zhang J, et al. Degradation of carbon fiber-reinforced polymer using supercritical fluids[J]. Fibers and Polymers,2017,18(4):795-805. doi: 10.1007/s12221-017-1151-4
    [26]
    Piñero-Hernanz R, Dodds C, Hyde J, et al. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water[J]. Composites Part A:Applied Science and Manufacturing,2008,39(3):454-461. doi: 10.1016/j.compositesa.2008.01.001
    [27]
    Knight C C, Zeng C, Zhang C, et al. Fabrication and properties of composites utilizing reclaimed woven carbon fiber by sub-critical and supercritical water recycling[J]. Materials Chemistry and Physics,2015,149:317-323.
    [28]
    Bai Y, Wang Z, Feng L. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water[J]. Materials and Design,2010,31(2):999-1002. doi: 10.1016/j.matdes.2009.07.057
    [29]
    Oliveux G, Dandy L O, Leeke G A. Degradation of a model epoxy resin by solvolysis routes[J]. Polymer Degradation and Stability,2015,118:96-103. doi: 10.1016/j.polymdegradstab.2015.04.016
    [30]
    Oliveux G, Bailleul J-L, Gillet A, et al. Recovery and reuse of discontinuous carbon fibres by solvolysis: realignment and properties of remanufactured materials[J]. Composites Science and Technology,2017,139:99-108. doi: 10.1016/j.compscitech.2016.11.001
    [31]
    Keith M J, Leeke G A, Khan P, et al. Catalytic degradation of a carbon fibre reinforced polymer for recycling applications[J]. Polymer Degradation and Stability,2019,166:188-201. doi: 10.1016/j.polymdegradstab.2019.05.020
    [32]
    Gong X, Kang H, Liu Y, et al. Decomposition mechanisms and kinetics of amine/anhydride-cured DGEBA epoxy resin in near-critical water[J]. RSC Advances,2015,5(50):40269-40282. doi: 10.1039/C5RA03828F
    [33]
    Liu Y, Wei H, Wu S, et al. Kinetic study of epoxy resin decomposition in near-critical water[J]. Chemical Engineering & Technology,2012,35(4):713-719.
    [34]
    Liu Y, Shan G, Meng L. Recycling of carbon fibre reinforced composites using water in subcritical conditions[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2009,520(1-2):179-183. doi: 10.1016/j.msea.2009.05.030
    [35]
    Liu Y, Kang H, Gong X, et al. Chemical decomposition of epoxy resin in near-critical water by an acid-base catalytic method[J]. RSC Advances,2014,4(43):22367-22373. doi: 10.1039/C4RA02023E
    [36]
    Liu Y, Liu J, Jiang Z, et al. Chemical recycling of carbon fibre reinforced epoxy resin composites in subcritical water: synergistic effect of phenol and KOH on the decomposition efficiency[J]. Polymer Degradation and Stability,2012,97(3):214-220. doi: 10.1016/j.polymdegradstab.2011.12.028
    [37]
    Sokoli H U, Beauson J, Simonsen M E, et al. Optimized process for recovery of glass- and carbon fibers with retained mechanical properties by means of near- and supercritical fluids[J]. The Journal of Supercritical Fluids,2017,124:80-89. doi: 10.1016/j.supflu.2017.01.013
    [38]
    Okajima I, Hiramatsu M, Shimamura Y, et al. Chemical recycling of carbon fiber reinforced plastic using supercritical methanol[J]. The Journal of Supercritical Fluids,2014,91:68-76. doi: 10.1016/j.supflu.2014.04.011
    [39]
    Piñero-Hernanz R, García-Serna J, Dodds C, et al. Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions[J]. The Journal of Supercritical Fluids,2008,46(1):83-92. doi: 10.1016/j.supflu.2008.02.008
    [40]
    Hyde J R, Lester E, Kingman S, et al. Supercritical propanol, a possible route to composite carbon fibre recovery: A viability study[J]. Composites Part A:Applied Science and Manufacturing,2006,37(11):2171-2175. doi: 10.1016/j.compositesa.2005.12.006
    [41]
    Yan H, Lu C, Jing D, et al. Chemical degradation of TGDDM/DDS epoxy resin in supercritical 1-propanol: Promotion effect of hydrogenation on thermolysis[J]. Polymer Degradation and Stability,2013,98(12):2571-2582. doi: 10.1016/j.polymdegradstab.2013.09.026
    [42]
    Jiang G, Pickering S J, Lester E H, et al. Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol[J]. Composites Science and Technology,2009,69(2):192-198. doi: 10.1016/j.compscitech.2008.10.007
    [43]
    Cheng H, Huang H, Liu Z, et al. Reaction kinetics of CFRP degradation in supercritical Fluids[J]. Journal of Polymers and the Environment,2017,26(5):2153-2165.
    [44]
    Okajima I, Watanabe K, Haramiishi S, et al. Recycling of carbon fiber reinforced plastic containing amine-cured epoxy resin using supercritical and subcritical fluids[J]. The Journal of Supercritical Fluids,2017,119:44-51. doi: 10.1016/j.supflu.2016.08.015
    [45]
    Jiang G, Pickering S J, Lester E H, et al. Decomposition of epoxy resin in supercritical isopropanol[J]. Industrial & Engineering Chemistry Research,2010,49(10):4535-4541.
    [46]
    Yan H, Lu C-x, Jing D-q, et al. Chemical degradation of amine-cured DGEBA epoxy resin in supercritical 1-propanol for recycling carbon fiber from composites[J]. Chinese Journal of Polymer Science,2014,32(11):1550-1563. doi: 10.1007/s10118-014-1519-5
    [47]
    Yan H, Lu C-x, Jing D-q, et al. Recycling of carbon fibers in epoxy resin composites using supercritical 1-propanol[J]. New Carbon Materials,2016,31(1):46-54. doi: 10.1016/S1872-5805(16)60004-5
    [48]
    Huang H, Yin Y, Cheng H, et al. Degradation mechanism of CF/EP composites in supercritical n-butanol with alkali additives[J]. Journal of Polymers and the Environment,2017,25(2):115-125. doi: 10.1007/s10924-016-0776-5
    [49]
    Liu J, Wang K, Ma L, et al. Insight into the role of potassium hydroxide for accelerating the degradation of anhydride-cured epoxy resin in subcritical methanol[J]. The Journal of Supercritical Fluids,2015,107:605-611.
    [50]
    Yildirir E, Onwudili J A, Williams P T. Recovery of carbon fibres and production of high quality fuel gas from the chemical recycling of carbon fibre reinforced plastic wastes[J]. The Journal of Supercritical Fluids,2014,92:107-114. doi: 10.1016/j.supflu.2014.05.015
    [51]
    Liu Y, Meng L, Huang Y, et al. Recycling of carbon/epoxy composites[J]. Journal of Applied Polymer Science,2004,94(5):1912-1916. doi: 10.1002/app.20990
    [52]
    Li J, Xu P-L, Zhu Y-K, et al. A promising strategy for chemical recycling of carbon fiber/thermoset composites: self-accelerating decomposition in a mild oxidative system[J]. Green Chemistry,2012,14(12):3260-3263. doi: 10.1039/c2gc36294e
    [53]
    Zabihi O, Ahmadi M, Liu C, et al. Development of a low cost and green microwave assisted approach towards the circular carbon fibre composites[J]. Composites Part B:Engineering,2020,184:107750. doi: 10.1016/j.compositesb.2020.107750
    [54]
    Das M, Chacko R, Varughese S. An efficient method of recycling of CFRP waste using peracetic acid[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):1564-1571.
    [55]
    Lee S-H, Choi H-O, Kim J-S, et al. Circulating flow reactor for recycling of carbon fiber from carbon fiber reinforced epoxy composite[J]. Korean Journal of Chemical Engineering,2011,28(2):449-454. doi: 10.1007/s11814-010-0394-1
    [56]
    Hanaoka T, Arao Y, Kayaki Y, et al. Analysis of nitric acid decomposition of epoxy resin network structures for chemical recycling[J]. Polymer Degradation and Stability,2021,186:109537. doi: 10.1016/j.polymdegradstab.2021.109537
    [57]
    Dang W, Kubouchi M, Yamamoto S, et al. An approach to chemical recycling of epoxy resin cured with amine using nitric acid[J]. Polymer,2002,43(10):2953-2958. doi: 10.1016/S0032-3861(02)00100-3
    [58]
    Dang W, Kubouchi M, Sembokuya H, et al. Chemical recycling of glass fiber reinforced epoxy resin cured with amine using nitric acid[J]. Polymer,2005,46(6):1905-1912. doi: 10.1016/j.polymer.2004.12.035
    [59]
    Tian F, Wang X-l, Yang Y, et al. Energy-efficient conversion of amine-cured epoxy resins into functional chemicals based on swelling-induced nanopores[J]. ACS Sustainable Chemistry & Engineering,2020,8(5):2226-2235.
    [60]
    Xu P, Li J, Ding J. Chemical recycling of carbon fibre/epoxy composites in a mixed solution of peroxide hydrogen and N, N-dimethylformamide[J]. Composites Science and Technology,2013,82:54-59. doi: 10.1016/j.compscitech.2013.04.002
    [61]
    Navarro C A, Kedzie E A, Ma Y, et al. Mechanism and catalysis of oxidative degradation of fiber-reinforced epoxy composites[J]. Topics in Catalysis,2018,61(7-8):704-709. doi: 10.1007/s11244-018-0917-2
    [62]
    Ma Y, Navarro C A, Williams T J, et al. Recovery and reuse of acid digested amine/epoxy-based composite matrices[J]. Polymer Degradation and Stability,2020,175:109125. doi: 10.1016/j.polymdegradstab.2020.109125
    [63]
    Zhang L, Liu J, Nie W, et al. Degradation of anhydride-cured epoxy resin using simultaneously recyclable solvent and organic base catalyst[J]. Journal of Material Cycles and Waste Management,2017,20(1):568-577.
    [64]
    Kuang X, Zhou Y, Shi Q, et al. Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions[J]. ACS Sustainable Chemistry & Engineering,2018,6(7):9189-9197.
    [65]
    Ye L, Wang K, Feng H, et al. Recycling of carbon fiber-reinforced epoxy resin-based composites using a benzyl alcohol/alkaline system[J]. Fibers and Polymers,2021,22(3):811-818. doi: 10.1007/s12221-021-0266-9
    [66]
    Yang P, Zhou Q, Yuan X-X, et al. Highly efficient solvolysis of epoxy resin using poly(ethylene glycol)/NaOH systems[J]. Polymer Degradation and Stability,2012,97(7):1101-1106. doi: 10.1016/j.polymdegradstab.2012.04.007
    [67]
    Yang P, Zhou Q, Li X-Y, et al. Chemical recycling of fiber-reinforced epoxy resin using a polyethylene glycol/NaOH system[J]. Journal of Reinforced Plastics and Composites,2014,33(22):2106-2114. doi: 10.1177/0731684414555745
    [68]
    Jiang J, Deng G, Chen X, et al. On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition[J]. Composites Science and Technology,2017,151:243-251. doi: 10.1016/j.compscitech.2017.08.007
    [69]
    Liu T, Zhang M, Guo X, et al. Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin[J]. Polymer Degradation and Stability,2017,139:20-27. doi: 10.1016/j.polymdegradstab.2017.03.017
    [70]
    Zhao X, Liu X, Feng K, et al. Multicycling of epoxy thermoset through a two-step strategy of alcoholysis and hydrolysis using a self-separating catalysis system[J]. ChemSusChem,2022,15(3):e202101607.
    [71]
    Sun H, Guo G, Memon S A, et al. Recycling of carbon fibers from carbon fiber reinforced polymer using electrochemical method[J]. Composites Part A:Applied Science and Manufacturing,2015,78:10-17. doi: 10.1016/j.compositesa.2015.07.015
    [72]
    Sun H, Memon S A, Gu Y, et al. Degradation of carbon fiber reinforced polymer from cathodic protection process on exposure to NaOH and simulated pore water solutions[J]. Materials and Structures,2016,49(12):5273-5283.
    [73]
    Zhu J-H, Chen P-y, Su M-n, et al. Recycling of carbon fibre reinforced plastics by electrically driven heterogeneous catalytic degradation of epoxy resin[J]. Green Chemistry,2019,21(7):1635-1647. doi: 10.1039/C8GC03672A
    [74]
    Oshima K, Matsuda S, Hosaka M, et al. Rapid removal of resin from a unidirectional carbon fiber reinforced plastic laminate by a high-voltage electrical treatment[J]. Separation and Purification Technology,2020,231:115885. doi: 10.1016/j.seppur.2019.115885
    [75]
    Oshima K, Hosaka M, Matsuda S, et al. Removal mechanism of epoxy resin from CFRP composites triggered by water electrolysis gas generation[J]. Separation and Purification Technology,2020,251:117296. doi: 10.1016/j.seppur.2020.117296
    [76]
    Braun D, von Gentzkow W, Rudolf A P. Hydrogenolytic degradation of thermosets[J]. Polymer Degradation and Stability,2001,74(1):25-32. doi: 10.1016/S0141-3910(01)00035-0
    [77]
    Liu T, Guo X, Liu W, et al. Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation[J]. Green Chemistry,2017,19(18):4364-4372. doi: 10.1039/C7GC01737E
    [78]
    Zhao X, Wang X-L, Tian F, et al. A fast and mild closed-loop recycling of anhydride-cured epoxy through microwave-assisted catalytic degradation by trifunctional amine and subsequent reuse without separation[J]. Green Chemistry,2019,21(9):2487-2493. doi: 10.1039/C9GC00685K
    [79]
    Wang Y, Cui X, Ge H, et al. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of the carbon–nitrogen bond[J]. ACS Sustainable Chemistry & Engineering,2015,3(12):3332-3337.
    [80]
    Tian F, Yang Y, Wang X-L, et al. From waste epoxy resins to efficient oil/water separation materials via a microwave assisted pore-forming strategy[J]. Materials Horizons,2019,6(8):1733-1739. doi: 10.1039/C9MH00541B
    [81]
    Liu X, Tian F, Zhao X, et al. Recycling waste epoxy resin as hydrophobic coating of melamine foam for high-efficiency oil absorption[J]. Applied Surface Science,2020,529:147151. doi: 10.1016/j.apsusc.2020.147151
    [82]
    Yu K, Shi Q, Dunn M L, et al. Carbon fiber reinforced thermoset composite with near 100% recyclability[J]. Advanced Functional Materials,2016,26(33):6098-6106. doi: 10.1002/adfm.201602056
    [83]
    Kuang X, Guo E, Chen K, et al. Extraction of biolubricant via chemical recycling of thermosetting polymers[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):6880-6888.
    [84]
    Chen J-H, An X-P, Li Y-D, et al. Reprocessible epoxy networks with tunable physical properties: synthesis, stress relaxation and recyclability[J]. Chinese Journal of Polymer Science,2018,36(5):641-648. doi: 10.1007/s10118-018-2027-9
    [85]
    Chen J-H, Lu J-H, Pu X-L, et al. Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification[J]. Chemosphere,2022,294:133778. doi: 10.1016/j.chemosphere.2022.133778
    [86]
    Mu S, Zhang Y, Zhou J, et al. Recyclable and mechanically robust palm oil-derived epoxy resins with reconfigurable shape-memory properties[J]. ACS Sustainable Chemistry & Engineering,2020,8(13):5296-5304.
    [87]
    Liu T, Hao C, Zhang S, et al. A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry[J]. Macromolecules,2018,51(15):5577-5585. doi: 10.1021/acs.macromol.8b01010
    [88]
    Azcune I, Odriozola I. Aromatic disulfide crosslinks in polymer systems: self-healing, reprocessability, recyclability and more[J]. European Polymer Journal,2016,84:147-160. doi: 10.1016/j.eurpolymj.2016.09.023
    [89]
    Johnson L M, Ledet E, Huffman N D, et al. Controlled degradation of disulfide-based epoxy thermosets for extreme environments[J]. Polymer,2015,64:84-92. doi: 10.1016/j.polymer.2015.03.020
    [90]
    de Luzuriaga A R, Martin R, Markaide N, et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites[J]. Materials Horizons,2016,3(3):241-247. doi: 10.1039/C6MH00029K
    [91]
    Zhou Q, Zhu X, Zhang W, et al. Recyclable high performance epoxy composites based on double dynamic carbon-nitrogen and disulfide bonds[J]. ACS Applied Polymer Materials,2020,2(5):1865-1873. doi: 10.1021/acsapm.0c00105
    [92]
    Takahashi A, Ohishi T, Goseki R, et al. Degradable epoxy resins prepared from diepoxide monomer with dynamic covalent disulfide linkage[J]. Polymer,2016,82:319-326. doi: 10.1016/j.polymer.2015.11.057
    [93]
    Wang B, Ma S, Yan S, et al. Readily recyclable carbon fiber reinforced composites based on degradable thermosets: a review[J]. Green Chemistry,2019,21(21):5781-5796. doi: 10.1039/C9GC01760G
    [94]
    Taynton P, Ni H, Zhu C, et al. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks[J]. Advanced Materials,2016,28(15):2904-2909. doi: 10.1002/adma.201505245
    [95]
    Wang S, Ma S, Li Q, et al. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite[J]. Green Chemistry,2019,21(6):1484-1497. doi: 10.1039/C8GC03477J
    [96]
    Xu X, Ma S, Wu J, et al. High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties[J]. Journal of Materials Chemistry A,2019,7(25):15420-15431. doi: 10.1039/C9TA05293C
    [97]
    Hashimoto T, Meiji H, Urushisaki M, et al. Degradable and chemically recyclable epoxy resins containing acetal linkages: synthesis, properties, and application for carbon fiber-reinforced plastics[J]. Journal of Polymer Science Part A:Polymer Chemistry,2012,50(17):3674-3681. doi: 10.1002/pola.26160
    [98]
    Yamaguchi A, Hashimoto T, Kakichi Y, et al. Recyclable carbon fiber-reinforced plastics (CFRP) containing degradable acetal linkages: synthesis, properties, and chemical recycling[J]. Journal of Polymer Science Part A:Polymer Chemistry,2015,53(8):1052-1059. doi: 10.1002/pola.27575
    [99]
    Kuroyanagi M, Yamaguchi A, Hashimoto T, et al. Novel degradable acetal-linkage-containing epoxy resins with high thermal stability: synthesis and application in carbon fiber-reinforced plastics[J]. Polymer Journal,2021,54(3):313-322.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(8)

    Article Metrics

    Article Views(1618) PDF Downloads(268) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return