Volume 38 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
ZHANG He-yao, CHENG Jin-xing, SONG Jin-liang, YIN Hui-qin, TANG Zhong-feng, LIU Zhan-jun, LIU Xiang-dong. Topography changes and microstructural evolution of nuclear graphite (IG-110) induced by Xe26+ irradiation. New Carbon Mater., 2023, 38(2): 393-404. doi: 10.1016/S1872-5805(23)60708-5
Citation: ZHANG He-yao, CHENG Jin-xing, SONG Jin-liang, YIN Hui-qin, TANG Zhong-feng, LIU Zhan-jun, LIU Xiang-dong. Topography changes and microstructural evolution of nuclear graphite (IG-110) induced by Xe26+ irradiation. New Carbon Mater., 2023, 38(2): 393-404. doi: 10.1016/S1872-5805(23)60708-5

Topography changes and microstructural evolution of nuclear graphite (IG-110) induced by Xe26+ irradiation

doi: 10.1016/S1872-5805(23)60708-5
Funds:  This work was supported by the National Natural Science Foundation of China (No. 52072397) and the DNL Cooperation Fund, CAS(DNL202012)
More Information
  • The microstructure of nuclear graphite, a key material in nuclear reactors, is affected by the high-flux irradiation. The damage to the graphite by irradiation is important for reactor safety. To understand the damage of nuclear graphite by irradiation, IG-110 nuclear graphite, a representative nuclear graphite, was chosen to investigate the change in morphology and microstructure caused by 7 MeV Xe26+ irradiation with peak damage doses of 0.1-5.0 displacements per atom (dpa) for samples of a size of 40.0 mm×40.0 mm×2.0 mm. The topography and microstructure of IG-110 were characterized by SEM, AFM, grazing incidence XRD, Raman spectroscopy and nano-indentation. Results indicate that after 7 MeV Xe26+ irradiation at a dose of 0. 11 dpa, a ridge-like structure appears on the surface of the IG-110 graphite, mainly in the binder region, and the surface roughness increases slightly. With a further increase of the irradiation dose, the ridge-like structure also appears in the filler region. At a dose of 0.55 dpa, pore shrinkage increases accompanied by pore closure, and the surface roughness also increases. The changes in topography and microstructure caused by irradiation are attributed to the expansion of graphite along the c-axis direction. With increasing irradiation dose the defect density and the degree of in-plane disorder in the graphene sheets increases, while the modulus and hardness of the graphite first increase and then decrease. Their increase is caused by dislocation pinning and closure of fine pores, while their decrease is attributed to an increase in porosity and the generation of an amorphous structure.
  • loading
  • [1]
    Fermi E. Experimental production of a divergent chain reaction[J]. American Journal of Physics,1952,20:536-558. doi: 10.1119/1.1933322
    [2]
    Nightingale R E. Nuclear Graphite[M]. Academic Press, 1962.
    [3]
    Jing S P, Zhang C, Pu J, et al. 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10[J]. Nuclear Science and Techniques,2016,27:66. doi: 10.1007/s41365-016-0071-0
    [4]
    Qi W, He Z T, Zhang B L, et al. Behaviors of fine (IG-110) and ultra-fine (HPG-510) grain graphite irradiated by 7 MeV Xe26+ ions[J]. Nuclear Science and Techniques,2017,28:144. doi: 10.1007/s41365-017-0292-x
    [5]
    Karthik C, Kane J, Butt D P, et al. Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites[J]. Carbon,2015,86:124-131. doi: 10.1016/j.carbon.2015.01.036
    [6]
    Chi S H, Kim G C, Hong J H, et al. Changes in the microhardness and Young’s modulus in 2 MeV C+ ion-irradiated IG-110 nuclear graphite[J]. Materials Science Forum,2005,475:1471-1474.
    [7]
    Chi S H, Kim G C. Comparison of 3 MeV C+ ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes[J]. Journal of Nuclear Materials,2008,381:98-105. doi: 10.1016/j.jnucmat.2008.08.001
    [8]
    Zhang B L, Xia H H, He X J, et al. Characterization of the effects of 3-MeV proton irradiation on fine-grained isotropic nuclear graphite[J]. Carbon,2014,77:311-318.
    [9]
    Huang Q, Lei Q T, Deng Q, et al. Raman spectra and modulus measurement on the cross section of proton-irradiated graphite[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2017,412:221-226.
    [10]
    Huang Q, Tang H, Liu Y, et al. Pore structure evolution of IG-110 graphite during argon ion irradiation at 600 °C[J]. Journal of Materials Science,2019,54:6098-6110. doi: 10.1007/s10853-019-03329-7
    [11]
    Huang Q, Li J J, Liu R D, et al. Surface morphology and microstructure evolution of IG-110 graphite after xenon ion irradiation and subsequent annealing[J]. Journal of Nuclear Materials,2017,491:213-220. doi: 10.1016/j.jnucmat.2017.05.013
    [12]
    He X J, Song J L, Xia H H, et al. Direct characterization of ion implanted pyrolytic carbon coatings deposited from natural gas[J]. Carbon,2014,68:95-103. doi: 10.1016/j.carbon.2013.10.058
    [13]
    Zhang H Y, Lei Q T, Song J L, et al. Direct characterization of ion implanted nanopore pyrolytic graphite coatings for molten salt nuclear reactors[J]. RSC Advances,2018,8:33927-33938. doi: 10.1039/C8RA06953K
    [14]
    Zheng G Q, Xu P, Sridharan K, et al. Pore Structure Analysis of Nuclear Graphites IG‐110 and NBG‐18[M]. Advances in Materials Science for Environmental and Nuclear Technology II, Volume 227. John Wiley & Sons, Inc. 2011.
    [15]
    Kelly B T, Burchell T D. Structure-related property changes in polycrystalline graphite under neutron irradiation[J]. Carbon,1994,32:499-505. doi: 10.1016/0008-6223(94)90172-4
    [16]
    Wen K Y, Marrow T J, Marsden B J. The microstructure of nuclear graphite binders[J]. Carbon,2008,46:62-71. doi: 10.1016/j.carbon.2007.10.025
    [17]
    Burchell T D. A microstructurally based fracture model for polygranular graphites[J]. Carbon,1996,34:297-316. doi: 10.1016/0008-6223(95)00171-9
    [18]
    Ishiyama S, Burchell T D, Strizak J P, et al. The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite[J]. Journal of Nuclear Materials,1996,230:1-7. doi: 10.1016/0022-3115(96)00005-0
    [19]
    Snead L L, Burchell T D, Katoh Y. Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature[J]. Journal of Nuclear Materials,2008,381:55-61. doi: 10.1016/j.jnucmat.2008.07.033
    [20]
    Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics,2007,9:1276-1291. doi: 10.1039/B613962K
    [21]
    Ferrari A C, Robertson J. Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond[J]. Physical Review B,2001,63:121405-1-4. doi: 10.1103/PhysRevB.63.121405
    [22]
    Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics,1970,53:1126-1130. doi: 10.1063/1.1674108
    [23]
    Krishna R, Wade J, Jones A N, et al. An understanding of lattice strain, defects and disorder in nuclear graphite[J]. Carbon,2017,124:314-333. doi: 10.1016/j.carbon.2017.08.070
    [24]
    Elman B S, Dresselhaus M S, Dresselhaus G, et al. Raman scattering from ion-implanted graphite[J]. Physical Review B,1981,24:1027-1034. doi: 10.1103/PhysRevB.24.1027
    [25]
    Niwase K, Tanabe T. Defect structure and amorphization of graphite irradiated by D+ and He+[J]. Materials Transactions,1993,34:1111-1121. doi: 10.2320/matertrans1989.34.1111
    [26]
    Beeman D, Silverman J, Lynds R, et al. Modeling studies of amorphous carbon[J]. Physical Review B,1984,30:870-875. doi: 10.1103/PhysRevB.30.870
    [27]
    Burchell T D, Eatherly W P. The effects of irradiation-damage on the properties of graph NOL N3M[J]. Journal of Nuclear Materials,1991,179:205-208.
    [28]
    Snead L L, Hay J C. Neutron irradiation induced amorphization of silicon carbide[J]. Journal of Nuclear Materials,1999,273(2):213-20. doi: 10.1016/S0022-3115(99)00023-9
    [29]
    Simmons J H W. Radiation Damage in Graphite[M]. Pergamon Press, 1965.
    [30]
    Zhang H Y, Song J L, Tang Z F, et al. The surface topography and microstructure of self-sintered nanopore graphite by Xe ions irradiation[J]. Applied Surface Science,2020,515:146022. doi: 10.1016/j.apsusc.2020.146022
    [31]
    Matsuo H. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite[R]. JAERI-M 91-090, 1991.
    [32]
    Zhang H Y, He Z, Song J L, et al. Characterization of the effect of He+ irradiation on nanoporous-isotropic graphite for molten salt reactors[J]. Nuclear Engineering and Technology, 2020, 1243-1251.
    [33]
    Freeman H M, Scott A J, Brydson R M D. Thermal annealing of nuclear graphite during in-situ electron irradiation[J]. Carbon,2017,115:659-664. doi: 10.1016/j.carbon.2017.01.057
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(247) PDF Downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return