Volume 38 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Nujud Badawi M, Namrata Agrawal, Syed Farooq Adil, S Ramesh, K Ramesh, Shahid Bashir. A review of wearable supercapacitors fabricated from highly flexible conductive fiber materials. New Carbon Mater., 2023, 38(2): 211-229. doi: 10.1016/S1872-5805(23)60721-8
Citation: Nujud Badawi M, Namrata Agrawal, Syed Farooq Adil, S Ramesh, K Ramesh, Shahid Bashir. A review of wearable supercapacitors fabricated from highly flexible conductive fiber materials. New Carbon Mater., 2023, 38(2): 211-229. doi: 10.1016/S1872-5805(23)60721-8

A review of wearable supercapacitors fabricated from highly flexible conductive fiber materials

doi: 10.1016/S1872-5805(23)60721-8
More Information
  • Corresponding author:

    K Ramesh. E-mail: rameshkasi@um.edu.my

  • Received Date: 2022-11-01
  • Accepted Date: 2022-12-31
  • Rev Recd Date: 2022-12-31
  • Available Online: 2023-03-03
  • Publish Date: 2023-04-07
  • Supercapacitors fabricated from fiber materials are becoming important electrochemical energy storage devices owing to their high flexibility, light weight and high energy density. They are used in electronic systems such as information sensing, computation, communication and electronic textiles due to their higher power density than standard parallel plate capacitors and batteries. Here, the effects of the composition, spinning and fabrication conditions on the electrochemical performance of supercapacitors fibers made from carbon nanotubes, graphene and poly(3,4- ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are reviewed in the context of wearable energy storage devices.

  • loading
  • [1]
    Gulzar U, Goriparti S, Miele E, et al. Next-generation textiles: from embedded supercapacitors to lithium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(43):16771-16800. doi: 10.1039/C6TA06437J
    [2]
    Xu J, Li X, Li X, et al. Free-standing cotton-derived carbon microfiber@nickel-aluminum layered double hydroxides composite and its excellent capacitive performance[J]. Journal of Alloys and Compounds,2019,787:27-35. doi: 10.1016/j.jallcom.2019.01.270
    [3]
    Muzaffar A, Ahamed M B, Deshmukh K, et al. A review on recent advances in hybrid supercapacitors: design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews,2019,101:123-145. doi: 10.1016/j.rser.2018.10.026
    [4]
    Gielen D, Boshell F, Saygin D, et al. The role of renewable energy in the global energy transformation[J]. Energy Strategy Reviews,2019,24:38-50. doi: 10.1016/j.esr.2019.01.006
    [5]
    Lin X, Wu M, Zhang L, et al. Superior stretchable conductors by electroless plating of copper on knitted fabrics[J]. ACS Applied Electronic Materials,2019,1:397-406. doi: 10.1021/acsaelm.8b00115
    [6]
    Riaz A, Sarker M R, Saad M H M, et al. Review on comparison of different energy storage technologies used in micro-energy harvesting, WSNs, low-cost microelectronic devices: Challenges and recommendations[J]. Sensors,2021,21:5041. doi: 10.3390/s21155041
    [7]
    Yong S, Owen J R, Tudor M J, et al. Fabric based supercapacitor[J]. Journal of Physics:Conference Series,2013,476(1):1742-6596.
    [8]
    Sundriyal, P, Bhattacharya S. Textile-based supercapacitors for flexible and wearable electronic applications[J]. Scientific Reports,2020,10:13259. doi: 10.1038/s41598-020-70182-z
    [9]
    Lu Z, Chao Y, Ge Y, et al. High-performance hybrid carbon nanotube fibers for wearable energy storage[J]. Nanoscale,2017,9(16):5063-5071. doi: 10.1039/C7NR00408G
    [10]
    Miaudet P, Badaire S, Maugey M, et al. Hot drawing of single and multiwall carbon nanotube fibers for high toughness and alignment[J]. Nano Letters,2005,5(11):2212-2215. doi: 10.1021/nl051419w
    [11]
    Behabtu N, Young C C, Tsentalovich D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity[J]. Science,2013,339(6116):182-186. doi: 10.1126/science.1228061
    [12]
    Bucossi A R, Cress C D, Schauerman C M, et al. Enhanced electrical conductivity in extruded single-wall carbon nanotube wires from modified coagulation parameters and mechanical processing[J]. ACS Applied Materials and Interfaces,2015,7(49):27299-27305. doi: 10.1021/acsami.5b08668
    [13]
    Zhang X, Jiang K, Feng C, Liu, et al. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays[J]. Advanced Energy Materials,2006,18(12):1505-1510.
    [14]
    Zhang X, Li Q, Tu Y, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays[J]. Small,2007,3(2):244-248. doi: 10.1002/smll.200600368
    [15]
    Zhang S, Zhu L, Minus M L, et al. Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition[J]. Journal of Materials Science,2008,43(13):4356-4362. doi: 10.1007/s10853-008-2558-5
    [16]
    Ma W, Liu L, Yang R, et al. Monitoring a micromechanical process in macroscale carbon nanotube films and fibers[J]. Adv. Energy Mater,2009,21(5):603-608.
    [17]
    Guo F, Li C, Wei J, et al. Fabrication of highly conductive carbon nanotube fibers for electrical application[J]. Materials Research Express,2015,2(9):2053-1591.
    [18]
    Liu L, Yu Y, Yan C, et al. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes[J]. Nature Communications,2015,6(1):1-9.
    [19]
    Zhou Y, Wang X, Acauan L, et al. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays[J]. Advanced Energy Materials,2019,31(30):1901-916.
    [20]
    Wang K, Zhao P, Zhou X, et al. Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites[J]. Journal of Materials Chemistry,2011,21(41):16373-16378. doi: 10.1039/c1jm13722k
    [21]
    Cheng M, Meng Y N, Wein Zn X. Conducting polymer nanostructures and their derivatives for flexible supercapacitors[J]. Israel Journal of Chemistry,2018,58(12):1299-1314. doi: 10.1002/ijch.201800077
    [22]
    Wang Z, Wang H, Ji S, et al. Design and synthesis of tremella-like Ni–Co–S flakes on co-coated cotton textile as high-performance electrode for flexible supercapacitor[J]. Journal of Alloys and Compounds,2020,8(14):1259-1267.
    [23]
    Liu L, Yu Y, Yan C, et al. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes[J]. Nature Communications,2015,6:10-1038.
    [24]
    Zhang P, Zhang H, Yan C, et al. Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors[J]. Materials Research Express,2017,4(7):075-602.
    [25]
    Garcia Torres J, Crean C. Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese dioxide/PEDOT: PSS fibres[J]. Materials and Design,2018,155:194-202. doi: 10.1016/j.matdes.2018.05.070
    [26]
    Liu G, Chen X, Liu J, et al. Fabrication of PEDOT: PSS/rGO fibers with high flexibility and electrochemical performance for supercapacitors[J]. Electrochimica Acta,2021,365:3875-3883.
    [27]
    Yuan D, Li B, Cheng J, et al. Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT: PSS fibers from aqueous coagulation[J]. Journal of Materials Chemistry A,2016,4(30):11616-11624. doi: 10.1039/C6TA04081K
    [28]
    Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0
    [29]
    Foroughi J, Spinks G M, Aziz S, et al. Knitted carbon-nanotube-sheath/spandex-core elastomeric yarns for artificial muscles and strain sensing[J]. ACS Nano,2016,10(10):9129-9135. doi: 10.1021/acsnano.6b04125
    [30]
    Karimi M, Solati N, Amiri M, et al. Carbon nanotubes part I: Preparation of a novel and versatile drug-delivery vehicle[J]. Expert Opinion on Drug Delivery. Expert Opinion on Drug Delivery,2015,12(7):1071-1087. doi: 10.1517/17425247.2015.1003806
    [31]
    Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production[J]. Nanosci. Nanotechnol,2010,10:3739-3758.
    [32]
    Journet C, Bernier P. Production of carbon nanotubes[J]. Applied physics A: Materials science and processing,1998,67(1):1-9. doi: 10.1007/s003390050731
    [33]
    Ebbesen T, Ajayan P. Large-scale synthesis of carbon nanotubes[J]. Nature,1992,358:220-222. doi: 10.1038/358220a0
    [34]
    Shimotani K, Anazawa K, Watanabe H, et al. New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres[J]. Applied Physics A,2001,73:451-454. doi: 10.1007/s003390100821
    [35]
    Parkansky N, Boxman R, Alterkop B, et al. Single-pulse arc production of carbon nanotubes in ambient air[J]. Journal of Physics D: Applied Physics,2004,37:27-15.
    [36]
    Jung S H, Kim M R, Jeong S H, et al. High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen[J]. Applied Physics A,2003,76(2):285-286. doi: 10.1007/s00339-002-1718-8
    [37]
    Sharma R, Sharma A K, Sharma V. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics[J]. Cogent Engineering,2015,2(1):109-4017.
    [38]
    Ando Y, Zhao X, Sugai T, et al. Growing carbon nanotubes[J]. Materials Today,2004,7:22-29.
    [39]
    Shi Z, Lian Y, Liao F, et al. Purification of single-wall carbon nanotube[J]. Solid State Communications,1999,112(1):35-37. doi: 10.1016/S0038-1098(99)00278-1
    [40]
    Volotskova O, Fagan J A, Huh J Y, et al. Tailored distribution of single-wall carbon nanotubes from Arc plasma synthesis using magnetic fields[J]. ACS Nano,2010,4(9):5187-5192. doi: 10.1021/nn101279r
    [41]
    Pillai S K, Augustyn W G, Rossou M H, et al. The effect of calcination on multi-walled carbon nanotubes produced by Dc-Arc discharge[J]. J. Nanoscience and Nanotechnology,2008,8:3539-3544. doi: 10.1166/jnn.2008.115
    [42]
    Mwafy E A, Mostafa A M. Multi walled carbon nanotube decorated cadmium oxide nanoparticles via pulsed laser ablation in liquid media[J]. Optics and Laser Technology,2019,111:249-254. doi: 10.1016/j.optlastec.2018.09.055
    [43]
    Ismail R A, Mohsin M H, Ali A K, et al. Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application[J]. Physica E:Low-Dimensional Systems and Nanostructures,2020,119:633-022.
    [44]
    Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chemical Physics Letters,1995,243:49-54. doi: 10.1016/0009-2614(95)00825-O
    [45]
    Wang Y, Zhang Z, Liu H, et al. The effect of catalyst concentration on the synthesis of single-wall carbon nanotubes[J]. Spectrochimica Acta-Part A: Molecular and Biomolecular Spectroscopy,2002,58(10):2089-2095. doi: 10.1016/S1386-1425(01)00691-6
    [46]
    Karbhari V M, Love C T. Processing of nanotube-based nanocomposites[J]. Advances in Polymer Nanocomposites,2012,21:9381-9385.
    [47]
    Golnabi H. Carbon nanotube research developments in terms of published papers and patents, synthesis and production. synthesis and production[J]. Scientia Iranica,2012,19(6):2012-2022. doi: 10.1016/j.scient.2012.10.036
    [48]
    Ikegami T, Nakanishi F, Uchiyama M, et al. Optical measurement in carbon nanotubes formation by pulsed laser ablation[J]. Thin Solid Films,2004,457:7-11. doi: 10.1016/j.tsf.2003.12.033
    [49]
    Steiner S A, Baumann T F, Bayer B C, et al. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes[J]. Journal of the American Chemical Society,2009,131(34):12144-12154. doi: 10.1021/ja902913r
    [50]
    Mwafy E A. Eco-friendly approach for the synthesis of MWCNTs from waste tires via chemical vapor deposition[J]. Environmental Nanotechnology, Monitoring & Management,2020,14:100342.
    [51]
    Morançais A, Caussat B, Kihn Y, et al. A parametric study of the large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition[J]. Carbon,2007,45(3):624-635. doi: 10.1016/j.carbon.2006.10.009
    [52]
    Liu H, Takagi D, Ohno H, et al. Growth of single-walled carbon nanotubes from ceramic particles by alcohol chemical vapor deposition[J]. Applied Physics Express,2008,1(1):1143.
    [53]
    Zhang K, Li T, Ling L, et al. Facile synthesis of high density carbon nanotube array by a deposition-growth-densification process[J]. Carbon,2017,114:435-440. doi: 10.1016/j.carbon.2016.12.047
    [54]
    Das R, Shahnavaz Z, Ali M E, et al. Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis?[J]. Nanoscale Research Letters,2016,11(1):1186.
    [55]
    Whitener K E, Sheehan P E. Graphene synthesis[J]. Diamond and Related Materials,2014,46:25-34. doi: 10.1016/j.diamond.2014.04.006
    [56]
    Edwards R, Karl S Coleman. Graphene synthesis: Relationship to applications[J]. Nanoscale,2013,5:38-51. doi: 10.1039/C2NR32629A
    [57]
    Smith A T, LaChance A M, Zeng S, et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites[J]. Nano Materials Science,2019,1(1):31-47. doi: 10.1016/j.nanoms.2019.02.004
    [58]
    Novoselov K S, Geim A K, Morozov S v, et al. Electric field in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [59]
    Dato A, Radmilovic V, Lee Z, et al. Substrate-free gas-phase synthesis of graphene sheets[J]. Nano Letters,2008,8(7):2012-2016. doi: 10.1021/nl8011566
    [60]
    Shams S S, Zhang R, Zhu J. Graphene synthesis[J]. A review. materials science-poland,2015,33(3):566-578. doi: 10.1515/msp-2015-0079
    [61]
    Verdejo R, Bernal M, L R, et al. Graphene filled polymer nanocomposites[J]. Journal of Materials Chemistry,2011,21:3301-3310. doi: 10.1039/C0JM02708A
    [62]
    Ikram R, Jan B M, Ahmad W. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization[J]. Journal of Materials Research and Technology,2020,9(5):11587-11610. doi: 10.1016/j.jmrt.2020.08.050
    [63]
    Jayasena B, Subbiah S. A novel mechanical cleavage method for synthesizing few-layer graphenes[J]. Nanoscale Research Letters,2011,6(1):1-7.
    [64]
    Krishnamoorthy K, Kim G S, Kim J S. Graphene nanosheets: Ultrasound assisted synthesis and characterization[J]. Ultrasonics Sonochemistry,2013,20:644-649. doi: 10.1016/j.ultsonch.2012.09.007
    [65]
    Geim A K, Novoselov K S. The rise of graphene nanoscience and technology[J]. Nature Publishing Group,2009,21:11-19.
    [66]
    Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications[J]. Chemical Reviews,2012,112(11):6027-6053. doi: 10.1021/cr300115g
    [67]
    Krishnamoorthy K, Veerapandian M, Yun K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon,2013,53:38-49. doi: 10.1016/j.carbon.2012.10.013
    [68]
    Horii T, Hikawa H, Katsunuma M, et al. Synthesis of highly conductive PEDOT: PSS and correlation with hierarchical structure[J]. Polymer,2018,140:33-38. doi: 10.1016/j.polymer.2018.02.034
    [69]
    Sakunpongpitiporn P, Phasuksom K, Paradee N, et al. Facile synthesis of highly conductive PEDOT: PSS: Via surfactant templates[J]. RSC Advances,2019,9(11):6363-6378. doi: 10.1039/C8RA08801B
    [70]
    Muro K, Watanabe M, Tamai T, et al. PEDOT/PSS nanoparticles: Synthesis and properties[J]. RSC Advances,2016,6(90):87147-87152. doi: 10.1039/C6RA16829A
    [71]
    Ma W, Chen S, Yang S, et al. Bottom-up fabrication of activated carbon fiber for all-solid-state supercapacitor with excellent electrochemical performance[J]. ACS Applied Materials,2016,8:14622-14627. doi: 10.1021/acsami.6b04026
    [72]
    Yao F, Pham D T, Lee Y. H. Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices[J]. ChemSusChem,2015,8:2284-2311. doi: 10.1002/cssc.201403490
    [73]
    Jha N, Ramesh P, Bekyarova E, et al. High energy density supercapacitor based on a hybrid carbon nanotube–reduced graphite oxide architecture[J]. Advanced Energy Materials,2012,2:438-444. doi: 10.1002/aenm.201100697
    [74]
    Sun, G, Wang, X, Chen, P. Microfiber devices based on carbon materials[J]. Materials Today,2015,18(4):215-226. doi: 10.1016/j.mattod.2014.12.001
    [75]
    Ryu S W, Hwang J W, Hong S H. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning[J]. Journal of Nanoscience and Nanotechnology,2012,12(7):5653-5657. doi: 10.1166/jnn.2012.6339
    [76]
    Lu Z, Raad R, Safaei F, Xi J, et al. Carbon nanotube based fiber supercapacitor as wearable energy storage[J]. Frontiers in Materials,2019,6:3389.
    [77]
    Xu Jie, Dou Shuming, Cui Xiaoya, et al. Potassium-based electrochemical energy storage devices: Development status and future prospect[J]. Energy Storage Materials,2021,34:85-106. doi: 10.1016/j.ensm.2020.09.001
    [78]
    Xu Y, Yuan T, Zhao Y, et al. Constructing multichannel carbon fibers as freestanding anodes for potassium-ion battery with high capacity and long cycle life[J]. Advanced Materials Interfaces,2020,7(3):7350.
    [79]
    Yang W, Zhou J, Wang S, et al. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage[J]. Energy & Environmental Science,2019,12(5):1605-1612.
    [80]
    Yu heng Lu, You chen Tang, Ke hanTang, et al. Controllable fabrication of superhierarchical carbon nanonetworks from 2D molecular brushes and their use in electrodes of flexible supercapacitors[J]. New Carbon Materials,2022,37(5):978-987. doi: 10.1016/S1872-5805(22)60641-3
    [81]
    Li X, Zhuang C, Xu J, et al. Rational construction of K0.5V2O5nanobelts/CNTs flexible cathode for multi-functional potassium-ion batteries[J]. Nanoscale,2021,13(17):8199-8209. doi: 10.1039/D1NR00993A
    [82]
    Zeng C, Xie F X, Yang X F, et al. Confined transformation derived ultrathin titanate nanosheets/graphene films for excellent Na/K ion storage[J]. Wiley-VCH,2022,130(28):8540-8544.
    [83]
    Qiu W, Xiao H, Li Y, et al. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries[J]. Small,2019,15(23):31-34.
    [84]
    Han J, Zhu K, Liu P, et al. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries[J]. Journal of Materials Chemistry A,2019,7(44):25268-25273. doi: 10.1039/C9TA09643D
    [85]
    Peng S, Wang L, Zhu Z, et al. Electrochemical performance of reduced graphene oxide/carbon nanotube hybrid papers as binder-free anodes for potassium-ion batteries[J]. Journal of Physics and Chemistry of Solids,2020,138:109296. doi: 10.1016/j.jpcs.2019.109296
    [86]
    Lang J, Li J, Ou X, et al. A flexible potassium-ion hybrid capacitor with superior rate performance and long cycling life[J]. ACS Applied Materials and Interfaces,2020,12(2):2424-2431. doi: 10.1021/acsami.9b17635
    [87]
    Cao B, Liu H, Zhang P, et al. Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes[J]. Advanced Functional Materials,2021,31(32):2102126. doi: 10.1002/adfm.202102126
    [88]
    Wang D, Wang P F, Lu B R, et al. Porous carbon tubes constructing freestanding flexible electrodes for symmetric potassium-ion hybrid capacitors[J]. ACS Applied Energy Materials,2021,4(12):13593-13604. doi: 10.1021/acsaem.1c02211
    [89]
    Bai R J, Zhang M X, Zhang X, et al. A multidimensional topotactic host composite anode toward transparent flexible potassium-ion microcapacitors[J]. ACS Applied Materials Interfaces,2021,14(1):1478-1488.
    [90]
    Liu S, Huang J, Tang Y, et al. Controllable preparation and functionalization strategies of novel polymer-based porous carbon materials[J]. Acta Polym. Sinica,2021,52(7):679-686.
    [91]
    Huang J, Chen Y, Leng K, et al. Morphology-persistent carbonization of self-assembled block copolymers for multifunctional coupled two-dimensional porous carbon hybrids[J]. Chemistry of Materials,2020,32(20):8971-8980. doi: 10.1021/acs.chemmater.0c03136
    [92]
    Shi C, Huang J, Tang Y, et al. A hierarchical porous carbon aerogel embedded with small-sized TiO2 nanoparticles for high-performance Li–S batteries[J]. Carbon,2022,202:59-65.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article Views(764) PDF Downloads(178) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return