Volume 38 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
XU Yu-jie, WANG Bin, WAN Yi, SUN Yi, WANG Wan-li, SUN Kang, YANG Li-jun, HU Han, WU Ming-bo. Understanding the process of lithium deposition on a graphite anode for better lithium-ion batteries. New Carbon Mater., 2023, 38(4): 678-697. doi: 10.1016/S1872-5805(23)60747-4
Citation: XU Yu-jie, WANG Bin, WAN Yi, SUN Yi, WANG Wan-li, SUN Kang, YANG Li-jun, HU Han, WU Ming-bo. Understanding the process of lithium deposition on a graphite anode for better lithium-ion batteries. New Carbon Mater., 2023, 38(4): 678-697. doi: 10.1016/S1872-5805(23)60747-4

Understanding the process of lithium deposition on a graphite anode for better lithium-ion batteries

doi: 10.1016/S1872-5805(23)60747-4
Funds:  The authors acknowledge the financial support from the startup support grant from China University of Petroleum (East China) (27RA2204027), Shandong Provincial Natural Science Foundation (ZR2020ZD08), Taishan Scholars Program of Shandong Province (tsqn20221117), Shandong Province Postdoctoral Innovative Talent Support Program (SDBX2022034) and Qingdao Postdoctoral Innovation Project (QDBSH20220202003)
More Information
  • Author Bio:

    许钰洁和王斌为共同第一作者

  • Corresponding author: HU Han, Professor. E-mail: hhu@upc.edu.cn; WU Ming-bo, Professor. E-mail: wumb@upc.edu.cn
  • Received Date: 2023-03-01
  • Accepted Date: 2023-05-04
  • Rev Recd Date: 2023-04-28
  • Available Online: 2023-06-01
  • Publish Date: 2023-08-01
  • A brief overview of recent developments in the formation, detection, and suppression of lithium dendrites in carbon-based lithium-ion batteries is presented. The electrochemical processes that result in the formation of lithium dendrites on the anode surface are reviewed, and various detection methods, including the essential operando technique for understanding the complex mechanism, are then introduced. Methods for suppressing lithium dendrite formation are discussed and prospects for future research and development are presented.
  • loading
  • [1]
    Zhu Y L, Wang Y X, Gao C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Materials,2020,35(4):358-370. doi: 10.1016/S1872-5805(20)60494-2
    [2]
    Wu M B, Li L Y, Liu J, et al. Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J]. New Carbon Materials,2015,30(5):471-475. doi: 10.1016/S1872-5805(15)60201-3
    [3]
    Xia L, Yu L, Hu D, et al. Electrolytes for electrochemical energy storage[J]. Materials Chemistry Frontiers,2017,1(4):584-618. doi: 10.1039/C6QM00169F
    [4]
    Guan L, Hu H, Teng X L, et al. Templating synthesis of porous carbons for energy-related applications: A review[J]. New Carbon Materials,2022,37(1):25-45. doi: 10.1016/S1872-5805(22)60574-2
    [5]
    Moharana S, West G, Walker M, et al. Controlling Li dendritic growth in graphite anodes by potassium electrolyte additives for Li-ion batteries[J]. ACS Applied Materials & Interfaces,2022,14(37):42078-42092.
    [6]
    Armand M, Tarascon J M. Building better batteries[J]. Nature,2008,451(7179):652-657. doi: 10.1038/451652a
    [7]
    Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society,2013,135(4):1167-1176. doi: 10.1021/ja3091438
    [8]
    Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy & Environmental Science,2011,4(9):3243-3262.
    [9]
    Palacín M R, de Guibert A. Why do batteries fail [J]? Science, 2016, 351(6273): 1253292.
    [10]
    Wang X, Huang R Q, Niu S Z, et al. Research progress on graphene-based materials for high-performance lithium-metal batteries[J]. New Carbon Materials,2021,36(4):711-728. doi: 10.1016/S1872-5805(21)60081-1
    [11]
    Fang R, Chen K, Yin L, et al. The regulating role of carbon nanotubes and graphene in lithium-Ion and lithium–sulfur batteries[J]. Advanced Materials,2019,31(9):1800863. doi: 10.1002/adma.201800863
    [12]
    Wakihara M. Recent developments in lithium ion batteries[J]. Materials Science and Engineering:R:Reports,2001,33(4):109-134. doi: 10.1016/S0927-796X(01)00030-4
    [13]
    Ecker M, Shafiei Sabet P, Sauer D U. Influence of operational condition on lithium plating for commercial lithium-ion batteries[J]. Electrochemical experiments and post-mortem-analysis. Applied Energy,2017,206:934-946.
    [14]
    Cai W, Yan C, Yao Y X, et al. The boundary of lithium plating in graphite electrode for safe lithium-Ion batteries[J]. Angewandte Chemie International Edition,2021,60(23):13007-13012. doi: 10.1002/anie.202102593
    [15]
    Lu J, Chen Z, Pan F, et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochemical Energy Reviews,2018,1(1):35-53. doi: 10.1007/s41918-018-0001-4
    [16]
    Waldmann T, Hogg B I, Wohlfahrt-Mehrens M. Li plating as unwanted side reaction in commercial Li-ion cells- a review[J]. Journal of Power Sources,2018,384:107-124. doi: 10.1016/j.jpowsour.2018.02.063
    [17]
    Liu Q, Du C, Shen B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Advances,2016,6(91):88683-88700. doi: 10.1039/C6RA19482F
    [18]
    Li Z, Huang J, Yann Liaw B, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources,2014,254:168-182. doi: 10.1016/j.jpowsour.2013.12.099
    [19]
    Aurbach D, Zinigrad E, Cohen Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics,2002,148(3):405-416.
    [20]
    Persson K, Sethuraman V A, Hardwick L J, et al. Lithium diffusion in graphitic carbon[J]. The Journal of Physical Chemistry Letters,2010,1(8):1176-1180. doi: 10.1021/jz100188d
    [21]
    Legrand N, Knosp B, Desprez P, et al. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling[J]. Journal of Power Sources,2014,245:208-216. doi: 10.1016/j.jpowsour.2013.06.130
    [22]
    Purushothaman B K, Landau U. Rapid charging of lithium-ion batteries using pulsed currents: A theoretical analysis[J]. Journal of The Electrochemical Society,2006,153(3):A533. doi: 10.1149/1.2161580
    [23]
    Arora P, Doyle M, White R E. Mathematical modeling of the lithium deposition overcharge reaction in lithium-Ion batteries using carbon-based negative electrodes[J]. Journal of The Electrochemical Society,1999,146(10):3543. doi: 10.1149/1.1392512
    [24]
    Tang M, Albertus P, Newman J. Two-dimensional modeling of lithium deposition during cell charging[J]. Journal of The Electrochemical Society,2009,156(5):A390. doi: 10.1149/1.3095513
    [25]
    Perkins R D, Randall A V, Zhang X, et al. Controls oriented reduced order modeling of lithium deposition on overcharge[J]. Journal of Power Sources,2012,209:318-325. doi: 10.1016/j.jpowsour.2012.03.003
    [26]
    Hein S, Latz A. Influence of local lithium metal deposition in 3D microstructures on local and global behavior of lithium-ion batteries[J]. Electrochimica Acta,2016,201:354-365. doi: 10.1016/j.electacta.2016.01.220
    [27]
    Waldmann T, Kasper M, Wohlfahrt-Mehrens M. Optimization of charging strategy by prevention of lithium deposition on anodes in high-energy lithium-ion batteries[J]. Electrochemical Experiments. Electrochimica Acta,2015,178:525-532. doi: 10.1016/j.electacta.2015.08.056
    [28]
    Liu S, Xiong L, He C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode[J]. Journal of Power Sources,2014,261:285-291. doi: 10.1016/j.jpowsour.2014.03.083
    [29]
    Waldmann T, Hogg B-I, Kasper M, et al. Interplay of operational parameters on lithium deposition in lithium-ion cells: systematic measurements with reconstructed 3-electrode pouch full cells[J]. Journal of The Electrochemical Society,2016,163(7):A1232. doi: 10.1149/2.0591607jes
    [30]
    Bugga R V, Smart M C. Lithium plating behavior in lithium-ion cells[J]. ECS Transactions,2010,25(36):241. doi: 10.1149/1.3393860
    [31]
    Waldmann T, Wilka M, Kasper M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries: A post-mortem study[J]. Journal of Power Sources,2014,262:129-135. doi: 10.1016/j.jpowsour.2014.03.112
    [32]
    Blyr A, Sigala C, Amatucci G, et al. Self-discharge of LiMn2O4/C Li‐ion cells in their discharged state: understanding by means of three‐electrode measurements[J]. Journal of The Electrochemical Society,1998,145(1):194. doi: 10.1149/1.1838235
    [33]
    Lin H P, Chua D, Salomon M, et al. Low-temperature behavior of Li-ion cells[J]. Electrochemical and Solid-State Letters,2001,4(6):A71. doi: 10.1149/1.1368736
    [34]
    Zhang S S, Xu K, Jow T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. Journal of Power Sources,2006,160(2):1349-1354. doi: 10.1016/j.jpowsour.2006.02.087
    [35]
    Petzl M, Danzer M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources,2014,254:80-87. doi: 10.1016/j.jpowsour.2013.12.060
    [36]
    Konz Z M, McShane E J, McCloskey B D. Detecting the onset of lithium plating and monitoring fast charging performance with voltage relaxation[J]. ACS Energy Letters,2020,5(6):1750-1757. doi: 10.1021/acsenergylett.0c00831
    [37]
    Ho A S, Parkinson D Y, Finegan D P, et al. 3D detection of lithiation and lithium plating in graphite anodes during fast charging[J]. ACS Nano,2021,15(6):10480-10487. doi: 10.1021/acsnano.1c02942
    [38]
    Harris S J, Timmons A, Baker D R, et al. Direct in situ measurements of Li transport in Li-ion battery negative electrodes[J]. Chemical Physics Letters,2010,485(4):265-274.
    [39]
    Dahn J R. Phase diagram of LixC6[J]. Physical Review B,1991,44(17):9170-9177. doi: 10.1103/PhysRevB.44.9170
    [40]
    Gao T, Han Y, Fraggedakis D, et al. Interplay of lithium intercalation and plating on a single graphite particle[J]. Joule,2021,5(2):393-414. doi: 10.1016/j.joule.2020.12.020
    [41]
    Downie L E, Krause L J, Burns J C, et al. In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry[J]. Journal of The Electrochemical Society,2013,160(4):A588. doi: 10.1149/2.049304jes
    [42]
    Birkenmaier C, Bitzer B, Harzheim M, et al. Lithium plating on graphite negative electrodes: Innovative qualitative and quantitative investigation methods[J]. Journal of The Electrochemical Society,2015,162(14):A2646. doi: 10.1149/2.0451514jes
    [43]
    Bommier C, Chang W, Lu Y, et al. In operando acoustic detection of lithium metal plating in commercial LiCoO2/graphite pouch cells[J]. Cell Reports Physical Science,2020,1(4):100035. doi: 10.1016/j.xcrp.2020.100035
    [44]
    Avdeev M V, Rulev A A, Bodnarchuk V I, et al. Monitoring of lithium plating by neutron reflectometry[J]. Applied Surface Science,2017,424:378-382. doi: 10.1016/j.apsusc.2017.01.290
    [45]
    Veronika Z, Christian V L, Michael H, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources,2014,271:152-159. doi: 10.1016/j.jpowsour.2014.07.168
    [46]
    Letellier M, Chevallier F, Morcrette M. In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle[J]. Carbon,2007,45(5):1025-1034. doi: 10.1016/j.carbon.2006.12.018
    [47]
    Börner M, Friesen A, Grützke M, et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources,2017,342:382-392. doi: 10.1016/j.jpowsour.2016.12.041
    [48]
    Chang H J, Trease N M, Ilott A J, et al. Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6Li/7Li NMR and SEM[J]. The Journal of Physical Chemistry C,2015,119(29):16443-16451. doi: 10.1021/acs.jpcc.5b03396
    [49]
    Märker K, Xu C, Grey C P. Operando NMR of NMC811/graphite lithium-ion batteries: Structure, dynamics, and lithium metal deposition[J]. Journal of the American Chemical Society,2020,142(41):17447-17456. doi: 10.1021/jacs.0c06727
    [50]
    Niemöller A, Jakes P, Eichel R-A, et al. EPR Imaging of metallic lithium and its application to dendrite localisation in battery separators[J]. Scientific Reports,2018,8(1):14331. doi: 10.1038/s41598-018-32112-y
    [51]
    Pifer J H, Magno R. Conduction-electron spin resonance in a lithium film[J]. Physical Review B,1971,3(3):663-673. doi: 10.1103/PhysRevB.3.663
    [52]
    Wandt J, Jakes P, Granwehr J, et al. Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries[J]. Materials Today,2018,21(3):231-240. doi: 10.1016/j.mattod.2017.11.001
    [53]
    Wang B, Le Fevre L W, Brookfield A, et al. Resolution of lithium deposition versus intercalation of graphite anodes in lithium ion batteries: an in situ electron paramagnetic resonance study[J]. Angewandte Chemie International Edition,2021,60(40):21860-21867. doi: 10.1002/anie.202106178
    [54]
    Uhlmann C, Illig J, Ender M, et al. In situ detection of lithium metal plating on graphite in experimental cells[J]. Journal of Power Sources,2015,279:428-438. doi: 10.1016/j.jpowsour.2015.01.046
    [55]
    Mei W, Jiang L, Liang C, et al. Understanding of Li-plating on graphite electrode: Detection, quantification and mechanism revelation[J]. Energy Storage Materials,2021,41:209-221. doi: 10.1016/j.ensm.2021.06.013
    [56]
    Luo J, Wu C E, Su L Y, et al. A proof-of-concept graphite anode with a lithium dendrite suppressing polymer coating[J]. Journal of Power Sources,2018,406:63-69. doi: 10.1016/j.jpowsour.2018.10.002
    [57]
    Lyu H, Li J, Wang T, et al. Carbon coated porous titanium niobium oxides as anode materials of lithium-ion batteries for extreme fast charge applications[J]. ACS Applied Energy Materials,2020,3(6):5657-5665. doi: 10.1021/acsaem.0c00633
    [58]
    Tallman K R, Zhang B, Wang L, et al. Anode overpotential control via interfacial modification: Inhibition of lithium plating on graphite anodes[J]. ACS Applied Materials & Interfaces,2019,11(50):46864-46874.
    [59]
    Yang G, Zhang S, Tong Y, et al. Minimizing carbon particle size to improve lithium deposition on natural graphite[J]. Carbon,2019,155:9-15. doi: 10.1016/j.carbon.2019.08.023
    [60]
    Yeo G, Sung J, Choi M, et al. Dendrite-free lithium deposition on conventional graphite anode by growth of defective carbon-nanotube for lithium-metal/ion hybrid batteries[J]. Journal of Materials Chemistry A,2022,10(24):12938-12945. doi: 10.1039/D2TA01907H
    [61]
    Cannarella J, Arnold C B. The effects of defects on localized plating in lithium-ion batteries[J]. Journal of The Electrochemical Society,2015,162(7):A1365. doi: 10.1149/2.1051507jes
    [62]
    Chen Y M, Hsu S T, Tseng Y H, et al. Minimization of ion-solvent clusters in gel electrolytes containing graphene oxide quantum dots for lithium-ion batteries[J]. Small,2018,14(12):1703571. doi: 10.1002/smll.201703571
    [63]
    Zheng H, Tan L, Zhang L, et al. Correlation between lithium deposition on graphite electrode and the capacity loss for LiFePO4/graphite cells[J]. Electrochimica Acta,2015,173:323-330. doi: 10.1016/j.electacta.2015.05.039
    [64]
    McShane E J, Bergstrom H K, Weddle P J, et al. Quantifying graphite solid-Electrolyte interphase chemistry and its impact on fast charging[J]. ACS Energy Letters,2022,7(8):2734-2744. doi: 10.1021/acsenergylett.2c01059
    [65]
    Yang G, Zhang S, Weng S, et al. Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite[J]. Nano Letters,2021,21(12):5316-5323. doi: 10.1021/acs.nanolett.1c01436
    [66]
    Park G, Nakamura H, Lee Y, et al. The important role of additives for improved lithium ion battery safety[J]. Journal of Power Sources,2009,189(1):602-606. doi: 10.1016/j.jpowsour.2008.09.088
    [67]
    Park T R, Lee J I, Choi Y S. Investigation on optimal pulse current charging of lithium-ion batteries using electro-chemical model [C]. 2021 21st International Conference on Control, Automation and Systems (ICCAS), 2021, 978-1-6654-1832-4, 2642-3901.
    [68]
    Gao Y, Zhang X, Cheng Q, et al. Classification and review of the charging strategies for commercial lithium-ion batteries[J]. IEEE Access,2019,7:43511-43524. doi: 10.1109/ACCESS.2019.2906117
    [69]
    Spingler F B, Wittmann W, Sturm J, et al. Optimum fast charging of lithium-ion pouch cells based on local volume expansion criteria[J]. Journal of Power Sources,2018,393:152-160. doi: 10.1016/j.jpowsour.2018.04.095
    [70]
    Anseán D, González M, Viera J C, et al. Fast charging technique for high power lithium iron phosphate batteries: a cycle life analysis[J]. Journal of Power Sources,2013,239:9-15. doi: 10.1016/j.jpowsour.2013.03.044
    [71]
    Aryanfar A, Brooks D, Merinov B V, et al. Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and monte carlo calculations[J]. The Journal of Physical Chemistry Letters,2014,5(10):1721-1726. doi: 10.1021/jz500207a
    [72]
    Peter K, Andreas J, Charging protocols for lithium-ion batteries and their impact on cycle life—an experimental study with different 18650 high-power cells[J], Journal of Energy Storage, 2016, 6: 125-141.
    [73]
    Notten P H L, Veld J H G O h, Beek J R G v. Boostcharging Li-ion batteries: a challenging new charging concept[J]. Journal of Power Sources,2005,145(1):89-94. doi: 10.1016/j.jpowsour.2004.12.038
    [74]
    Amanor-Boadu J M, Guiseppi-Elie A, Sánchez-Sinencio E. The impact of pulse charging parameters on the life cycle of lithium-ion polymer batteries[J]. Energies,2018,11(8):11082162.
    [75]
    Smith K, Wang C Y. Solid-state Diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles[J]. Journal of Power Sources,2006,161(1):628-639. doi: 10.1016/j.jpowsour.2006.03.050
    [76]
    Li J, Murphy E, Winnick J, et al. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries[J]. Journal of Power Sources,2001,102(1):302-309.
    [77]
    Bandhauer T M, Garimella S, Fuller T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of The Electrochemical Society,2011,158(3):R1. doi: 10.1149/1.3515880
    [78]
    Onda K, Ohshima T, Nakayama M, et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J]. Journal of Power Sources,2006,158(1):535-542. doi: 10.1016/j.jpowsour.2005.08.049
    [79]
    Zhang G, Cao L, Ge S, et al. In situ measurement of radial temperature distributions in cylindrical Li-ion cells[J]. Journal of The Electrochemical Society,2014,161(10):A1499. doi: 10.1149/2.0051410jes
    [80]
    Onda K, Kameyama H, Hanamoto T, et al. Experimental study on heat generation behavior of small lithium-ion secondary batteries[J]. Journal of The Electrochemical Society,2003,150(3):A285. doi: 10.1149/1.1543947
    [81]
    Lee C Y, Lee S J, Tang M S, et al. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J]. Sensors,2011,11(10):9942-9950. doi: 10.3390/s111009942
    [82]
    Wang H, Zhu Y, Kim S C, et al. Underpotential lithium plating on graphite anodes caused by temperature heterogeneity[J]. Proceedings of the National Academy of Sciences,2020,117(47):29453-29461. doi: 10.1073/pnas.2009221117
    [83]
    Ge H, Huang J, Zhang J, et al. Temperature-adaptive alternating current preheating of lithium-ion batteries with lithium deposition prevention[J]. Journal of The Electrochemical Society,2016,163(2):A290. doi: 10.1149/2.0961602jes
    [84]
    Langdon J, Manthiram A. Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes[J]. Advanced Functional Materials,2021,31:2010267.
    [85]
    Choi J, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials,2016,1:16013.
    [86]
    Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials,2018,30:1800561. doi: 10.1002/adma.201800561
    [87]
    Li B, Wang Y Q, Lin H B, et al. Improving high voltage stability of lithium cobalt oxide/graphite battery via forming protective films simultaneously on anode and cathode by using electrolyte additive[J]. Electrochimica Acta,2014,141:263-270. doi: 10.1016/j.electacta.2014.07.085
    [88]
    Li W S. Review—an unpredictable hazard in lithium-ion batteries from transition metal ions: dissolution from cathodes[J]. Deposition on Anodes and Elimination Strategies. Journal of The Electrochemical Society,2020,167:090514.
    [89]
    Szczuka C, Ackermann J, Schleker P P M, et al. Transient morphology of lithium anodes in batteries monitored by in operando pulse electron paramagnetic resonance[J]. Communications Materials,2021,2:20.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article Views(1043) PDF Downloads(217) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return