WEI Jian, QIN Cong-min, SU Huan, WANG Jia-min, LI Xue-ting. A review of silicon/carbon composite anode materials with an encapsulated structure for lithium-ion rechargeable batteries. New Carbon Mater., 2020, 35(2): 97-111.
Citation: WEI Jian, QIN Cong-min, SU Huan, WANG Jia-min, LI Xue-ting. A review of silicon/carbon composite anode materials with an encapsulated structure for lithium-ion rechargeable batteries. New Carbon Mater., 2020, 35(2): 97-111.

A review of silicon/carbon composite anode materials with an encapsulated structure for lithium-ion rechargeable batteries

Funds:  National Natural Science Foundation of China (51578448, 51308447); Natural Science Basic Research Plan in Shaanxi Province of China (2017ZDJC-18); Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security of the People's Republic of China (Shan Ren She Han [2016]789); Xi'an University of Architecture and Technology "Yanta Young Scholars" Project.
  • Received Date: 2020-01-03
  • Accepted Date: 2020-04-28
  • Rev Recd Date: 2020-03-20
  • Publish Date: 2020-04-28
  • Si/C composites as anode materials have received increasing attention owing to their high energy density, low self-discharge efficiency and long cycle life in lithium-ion rechargeable batteries (LIBs). However, severe volume expansion and an unstable solid electrolyte interface in the lithiation-delithiation of silicon are major obstacles to their commercial applications. The production methods, electrochemical performance, specific capacity and cycling performance of Si/C composite anode materials are summarized, and indicate that by forming an encapsulated structure, the Si volume expansion and cracking of the carbon layer during lithiation can be greatly avoided and the cycling stability of LIBs can be effectively improved. Si encapsulated by carbon is a promising strategy for preparing Si-based anode materials to replace graphite for high-capacity LIBs.
  • loading
  • Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
    Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(15):2878-2887.
    Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature material, 2005, 4(5):366-377.
    Tarascon J M, Armand M. Issues and challenges facing re chargeable lithium batteries[J]. Nature, 2001, 414(6861):359-366.
    Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Material, 2010, 9(5):461-461.
    Wang B, Li X L, Zhang X F, et al. Adaptable silcon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes[J]. ACS Nano, 2013, 7(2):1437-1445.
    Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7):2644-2647.
    Safari M. Battery electric vehicles:Looking behind to move forward[J]. Energy Policy, 2018, 115:54-65.
    Yazami R, Hamwi A, Guérin K, et al. Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries[J]. Electrochemistry Communications, 2007, 9(7):1850-1855.
    Imanishi N, Hasegawa S, Zhang T, et al. Lithium anode for lithium-air secon-dary batteries[J]. Journal of Power Sources, 2008, 185(2):1392-1397.
    Xu Q, Li J, Sun J, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted Lithium-ion battery anodes[J]. Advanced Energy Materials, 2016, 7(3):1601481.
    Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limit of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7):7854-7863.
    Netz A, Huggins R A. Amorphous silicon formed in situ as negative electrode reactant in lithium cells[J]. Solid State Ionics, Diffusion & Reactions, 2004, 175(1-4):215-219.
    Zhao J, Li J, Ying P, et al. Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in a molten salt[J]. Chemical Communications, 2013, 49(40):4477-4479.
    Ashuri M, He Q, Shaw L L. Silicon as a potential an-ode material for Li-ion batteries:Where size, geometry and structure matter[J]. Nanoscale, 2016, 8(1):74-103.
    Chen X F, Huang Y, Chen J J, et al. Preparation of graphene supported porous Si@C ternary composites and their electrochemical performance as high capacity anode materials for Li-ion batteries[J]. Ceramics International, 2015, 41(7):8533-8540.
    Sethuraman V A, Chon M J, Shimshak M, et al. In situ, measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation[J]. Journal of Power Sources, 2011, 195(15):5062-5066.
    Key B, Bhattacharyya R, Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26):9239-9249.
    Umeno T, Fukuda K, Wnag H, et al. Novel anode material for lithium-ion batteries:Carbon-coated silicon prepared by thermal vapor decomposition[J]. Chemistry Letters, 2001, 30(1-2):1186-1187.
    Guo Z P, Jia D Z, Yuan L, et al. Optimizing synthesis of silicon/disordered carbon composites for use as anode materials in lithium-ion batteries[J]. Journal of Power Sources, 2006, 159(1):332-335.
    Holzapfel M, Buqa H, Scheifele W, et al. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion[J]. Chemical Communication, 2005, 28(12):1566-1568.
    Uono H, Kim B C, Fuse T, et al. Optimized structure of silicon/carbon/graphite composites as an anode material for Li-ion batteries[J]. Journal of Electrochemical Society, 2006, 153(9):A1708-A1713.
    Ji H R, Kim J W, Sung Y E, et al. Failure modes of silicon powder negative electrode in lithium secondary batteries[J]. Electrochemical and Solid-State Letters, 2004, 7(10):A306-A309.
    Zhang X N, Huang P X, Li G R, et al. Si-AB composites as anode materials for lithium ion batteries[J]. Electrochemistry Communications, 2007, 9(4):713-717.
    Chen X L, Gerasopoulos K, Guo J C, et al. Virus-enabled silicon anode for Lithium-ion batteries[J]. ACS Nano, 2010, 4(9):5366-5372.
    Yao Y, McDowell M T, Ryu I, et al. Novel size and surface oxide effects in silicon nanowires as lithium battery anodes[J]. Nano Letters, 2011, 11(9):4018-4025.
    Song T, Xia J L, Lee J H, et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J]. Nano Letters, 2010, 10(5):1710-1716.
    Ge M, Rong J, Fang X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Letters, 2012, 12(5):2318-2328.
    Gan L, Guo H J, Wang Z X, et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries[J]. Electrochimica Acta, 2013, 104(1):117-123.
    Shu J, Li H, Yang R Z, et al. Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries[J]. Electrochemistry Communications, 2006, 8(1):51-54.
    Luo J Y, Zhao X, Wu J S, et al. Crumpled graphene encapsulated Si nanoparticles for lithium ion battery anodes[J]. Chemistry Letters, 2012, 3(13):1824-1829.
    Hieu N T, Suk J, Kim D W, et al. Silicon nanoparticle and carbon nanotube loaded carbon nanofibers for use in lithium-ion battery anodes[J]. Synthetic Metals, 2014, 198:36-40.
    Kim J Y, Dan T N, Kang J S, et al. Facile synthesis and stable cycling ability of hollow submicron silicon oxide-carbon composite anode material for Li-ion battery[J]. Journal of Alloys and Compounds, 2015, 633(5):92-96.
    Tang X, Wen G, Song Y. Novel scalable synthesis of porous silicon/carbon composite as anode material for superior lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 739:510-517.
    Tang X, Wen G, Song Y. Stable silicon/3D porous N-doped graphene composite for lithium-ion battery anodes with self-assembly[J]. Applied Surface Science, 2018, 436:398-404.
    Hwa Y, Kim W S, Hong S H, et al. High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries[J]. Electrochimica Acta, 2012, 71(3):201-205.
    Gu M S, Ko S H, Yoo S M, et al. Double locked silver-coated silicon nanoparticle/graphene core/shell fiber for high-performance lithium-ion battery anodes[J]. Journal of Power Sources, 2015, 300:351-357.
    Li S, Qin X, Zhang H, et al. Silicon/carbon composite microspheres with hierarchical core-shell structure as anode for lithium ion batteries[J]. Electrochemistry Communications, 2014, 49(49):98-102.
    Yu C, Gu X Y, Yu H K, et al. Degradation of organic dyes by Si/SiOx, core-shell nanowires:Spontaneous generation of superoxides without light irradiation[J]. Chemosphere, 2016, 144(16):836-841.
    Du Z P, Li E, Li G J, et al. One-step strategy for synthesis of yolk-shell silica spheres using trisiloxane-tailed ionic liquids as a template[J]. Journal of Materials Science, 2014, 49(14):4919-4926.
    Zhang R, Du Y, Li D, et al. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework[J]. Advanced Materials, 2014, 26(39):6749-6755.
    Su L, Jing Y, Zhou Z. Li ion battery materials with core-shell nanostructures[J]. Nanoscale, 2011, 3(10):3967-3983.
    Zhao T K, Liu Y N, Li T H, et al. Electrochemical performance of amorphous carbon nanotube as anode materials for lithium ion battery[J]. Journal of Nanoscience Nanotechnology, 2010, 10(6):3873-3877.
    Zhang Y, Du N, Zhu S J, et al. Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials[J]. Electrochimical Acta, 2017, 252:4919-4926.
    Su M R, Wan H F, Liu Y J, et al. Multi-layered carbon coated Si-based composite as anode for lithium-ion batteries[J]. Powder Technology, 2017, 323:294-300.
    Park S W, Kim J C, Dar M A, et al. Enhanced cycle stability of silicon coated with waste poly(vinyl butyral)-directed carbon for lithium-ion battery anodes[J]. Journal of Alloys and Compounds, 2017, 698:525-531.
    Pan Q R, Zuo P J, Lou S F, et al. Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017,723:434-440.
    Terranova M L, Orlanducci S, Tamburri E, et al. Si/C hybrid nanostructures for Li-ion anodes:An overview[J]. Journal of Power Sources, 2014, 246:167-177.
    Zhang M, Zhang T F, Ma Y F, et al. Latest development of nanostructured Si/C materials for lithium anode studies and applications[J]. Energy Storage Materials, 2016, 4:1-14.
    Su X, Wu Q L, Li J C, et al. Silicon-based nano materials for Lithium-ion batteries:A Review[J]. Advanced Energy Materials, 2014, 4(1):1300882
    Zhu X Y, Yang D J, Li J J, et al. Nanostructured Si-based anodes for Lithium-ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2015, 15, 15(1):15-30.
    Nitta N, Yushin G. High-capacity anode materials for Lithium-ion batteries:Choice of elements and structures for active particles[J]. Particle and Particle Systems Characterization, 2014, 31(3):317-336.
    Ko M, Oh P, Chae S, et al. Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications[J]. Small, 2015, 11(33):4058-4073.
    Roy P, Srivastava S K. Nanostructured anode materials for lithium ion batteries[J]. Journal of Materials Chemistry, 2015, 3(6):2454-2484.
    Zhao H, Yuan W, Liu G. Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries[J]. Nano Today, 2015, 10(2):193-212.
    Shen X H, Tian Z Y, Fan R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry, 2017, 27(4):1067-1090.
    Su L, Jing Y, Zhou Z. Li ion battery materials with core-shell nanostructures[J]. Nanoscale, 2011, 3(10):3967-3983.
    Zhang J, Liu J. Research advances in polymer emulsion based on "core-shell" structure particle design[J]. Advances in Colloid and Interface Science, 2013, 197-198:118-131.
    Hwa Y, Kim W S, Hong S H, et al. High capacity and rate capability of core-shell structured Nano-Si/C anode for Li-ion batteries[J]. Electrochimica Acta, 2012, 71(none):201-205.
    Wang D, Gao M, Pan H, et al. High performance amorphous Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization[J]. Journal of Power Sources, 2014, 256:190-199.
    Gao T Y, Gong Z L. Preparations and electrochemical performances of carbon coated silicon/graphite composites[J]. Journal of Electrochemistry, 2018, 24(3):253-261.
    Wang J, Li S L, Zhao Y, et al. The influence of different Si:C ratios on the electrochemical performance of silicon/carbon layered film anodes for lithium-ion batteries[J]. RSC Advances, 2018, 8(12):6660-6666.
    Liu J, Li N, Goodman M, et al. Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes[J]. ACS Nano, 2015, 9(2):1985-1994.
    Liu Y, Wen Z Y, Wang X Y, et al. Electrochemical behaviors of Si/C composite synthesized from containing precursors[J]. Journal of Power Sources, 2009, 189(1):733-737.
    Zhou R, Guo H, Yang Y, et al. N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray dried Si/graphite composite anode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2016, 689:130-137.
    Shao D, Tang D, Mai Y, et al. Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries[J]. Journal of Materials Chemistry, 2013, 1(47):15068-15075.
    Jeong H M, Lee S Y, Shin W H, et al. Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes[J]. RSC Advances, 2012, 2(10):4311-4318.
    Tao H C, Yang X L, Zhang L L, et al. Double-walled core-shell structured Si&SiO2@C nanocomposite as anode for lithium-ion batteries[J]. Ionics, 2014, 20(11):1547-1552.
    Liu N, Wu H, Mcdowell M T, et al. A Yolk-shell design for stabilized and scalable Li-Ion Battery alloy anodes[J]. Nano Letters, 2012, 12(6):3315-3321.
    Zhou X Y, Tang J J, Yang J, et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta, 2013, 87(Complete):663-668.
    Tao H, Fan L Z, Song W L, et al. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries[J]. Nanoscale, 2014, 6(6):3138-3142.
    Lin D, Lu Z, Hsu P C, et al. A high tap density secondary silicon particle anodes by scalable mechanical pressing for Lithium-ion batteries[J]. Energy & Environmental Science, 2015, 8(8):2371-2376.
    Xie J, Tong L, Su L, et al. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance[J]. Journal of Power Sources, 2017, 342:529-536.
    Sun Z, Tao S, Song X, et al. A Silicon/double-shelled carbon yolk-like nanostructure as high-performance anode materials for lithium-ion battery[J]. Journal of the Electrochemical Society, 2015, 162(8):A1530-A1536.
    Yang L Y, Li H Z, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries[J]. Sci Rep, 2015, 3(5):1-9.
    Wu H, Zheng G Y, Liu N, et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano Letters, 2012, 12(2):904-909.
    Hwang T H, Lee Y M, Kong B S, et al. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes[J]. Nano Letters, 2012, 12(2):802-807.
    Wua H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5):414-429
    Liu N, Lu Z, Zhao J, et al. A pomegranate-inspi red nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9(3):187-192.
    Chen S, Shen L, Van Aken P A, et al. Dual-functionalized double carbon shells coated nanoparticles for high performance Lithium-ion batteries[J]. Advanced Materials, 2017, 29(21):160560.
    Zhang M, Hou X H, Wang J, et al. Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2014, 588:206-211.
    Kim B C, Uno H, Satoh T, et al. Li-ion battery anodes properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill[J]. Solid State Ionics, 2004, 172(1-4):33-37.
    Datta M K, Kumta P N. Silicon and carbon based composite anodes for lithium ion batteries[J]. Journal of Power Source, 2006, 158(1):557-563.
    Wang H, Xie J, Zhang S, et al. Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials[J]. RSC Advances, 2016, 6(74):69882-69888.
    Xiao L, Song Y, Tian X D, et al. Preparation and electrochemical properties of Na F-Si-C-RGO hybrids[J]. New Carbon Materials, 2017, 32(4):304-310.
    Zuo X, Zhu J, Müller-Buschbaum P, et al. Silicon based lithium-ion battery anodes:A chronicle perspective review[J]. Nano Energy, 2017, 31(Complete):113-143.
    Ko M, Chae S, Jeong S. Elastica-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high rate lithium ion batteries[J]. ACS Nano, 2014, 8(8):8591-8599.
    Son I H, Park J H, Kwon S, et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density[J]. Nature Communications, 2015, 6(1):7393-7401.
    Zhou X, Yin Y X, Wan L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J]. Advance Energy Material, 2012, 2(9):1086-1090.
    DiLeo R A, Ganter M J, Thone M N, et al. Balanced approach to safety of high capacity silicon-germanium-carbon nanotube freestanding lithium ion battery anodes[J]. Nano Energy, 2013, 2(2):268-275.
    Kang C, Lahiri I, Baskaran R, et al. 3-dimensional carbon nanotube for Li-ion battery anode[J]. Journal of Power Sources, 2012, 219(none):364-370.
    Palomino J, Varshney D, Weiner B R, et al. Study of the structural changes undergone by hybrid nanostructured Si-CNTs employed as an anode material in a rechargeable Lithium-ion battery[J]. Journal of physical Chemistry, 2015, 119(36):21125-21134.
    Wang W, Kumta P N. Nanostructured hybrid sili con/carbon nanotube heterostructures:Reversible high-capacity Lithium-ion anodes[J]. ACS Nano, 2010, 4(4):2233-2241.
    Xiao Q, Fan Y, Wang X, et al. A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity[J]. Energy & Environmental Science, 2014, 7(2):655-661.
    Fan Y, Zhang Q, Lu C, et al. High performance carbon nanotube-silicon core-shell nanowires with a rationally structured core for lithium ion battery anodes[J]. Nanoscale, 2013, 5(4):1503-1506.
    Yue W, Jiang S, Huang W, et al. Sandwich-structural graphene-based metal oxides as anode materials for lithium-ion batteries[J]. Journal of Material Chemistry, A, 2013, 1(23):6928-6933.
    Yin L H, Wu M B, Li Y P, et al. Synthesis of SiO2@carbon-graphene hybrids as anode materials of lithium-ion batteries[J]. New Carbon Materials, 2017, 32(4):311-318.
    Mori T, Chen C J, Hung T F, et al. High specific capacity retention of graphene/silicon nanosized sandwich structure fabricated by continuous electron beam evaporation as anode for lithium-ion batteries[J]. Electrochimica Acta, 2015, 165:166-172.
    Liu X, Zhang J, Si W, et al. Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life[J]. ACS Nano, 2015, 9(2):1198-1205.
    Zhou M, Li X, Wang B, et al. High-performance silicon battery anodes enabled by engineering graphene assemblies[J]. Nano Letters, 2015, 15(9):6222-6228.
    Agyeman D A, Song K, Lee G H, et al. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery[J]. Advanced Energy Materials, 2016, 6(20):1600904.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(1142) PDF Downloads(404) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return