留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能超级电容器用相互连接的中孔炭片的制备

王晓婷 马浩 何孝军 汪静娴 韩久凤 汪勇

王晓婷, 马浩, 何孝军, 汪静娴, 韩久凤, 汪勇. 高性能超级电容器用相互连接的中孔炭片的制备. 新型炭材料, 2017, 32(3): 213-220. doi: 10.1016/S1872-5805(17)60118-5
引用本文: 王晓婷, 马浩, 何孝军, 汪静娴, 韩久凤, 汪勇. 高性能超级电容器用相互连接的中孔炭片的制备. 新型炭材料, 2017, 32(3): 213-220. doi: 10.1016/S1872-5805(17)60118-5
WANG Xiao-ting, MA Hao, HE Xiao-jun, WANG Jing-xian, HAN Jiu-feng, WANG Yong. Fabrication of interconnected mesoporous carbon sheets for use in high-performance supercapacitors. New Carbon Mater., 2017, 32(3): 213-220. doi: 10.1016/S1872-5805(17)60118-5
Citation: WANG Xiao-ting, MA Hao, HE Xiao-jun, WANG Jing-xian, HAN Jiu-feng, WANG Yong. Fabrication of interconnected mesoporous carbon sheets for use in high-performance supercapacitors. New Carbon Mater., 2017, 32(3): 213-220. doi: 10.1016/S1872-5805(17)60118-5

高性能超级电容器用相互连接的中孔炭片的制备

doi: 10.1016/S1872-5805(17)60118-5
基金项目: 国家自然科学基金(51272004, U1361110, U1508201);教育部新世纪优秀人才支持计划项目(NCET-13-0643);煤资源洁净利用创新团队.
详细信息
    作者简介:

    王晓婷,副教授,硕士.E-mail:53322258@qq.com

    通讯作者:

    何孝军,教授.E-mail:xjhe@ahut.edu.cn

  • 中图分类号: TQ127.1+1

Fabrication of interconnected mesoporous carbon sheets for use in high-performance supercapacitors

Funds: National Natural Science Foundation of China (51272004,U1361110,U1508201);New Century Excellent Talents in University of the Education Ministry of China (NCET-13-0643);Provincial Innovative Group for Processing&Clean Utilization of Coal Resource.
  • 摘要: 以煤沥青为碳源,金属-有机框架化合物(MOF-5)为模板和辅助碳源,耦合KOH活化,制备了超级电容器用相互连接的中孔炭片状材料(IMCSs)。通过透射电镜、氮吸脱附、X射线衍射、X射线光电子能谱等技术对所得材料进行了表征。结果表明,所得IMCSs的比表面积介于860~1 046 m2·g-1之间。在优化的条件下, IMCSs在6 M KOH电解液中,0.05 A·g-1电流密度下,其比容达到242 F·g-1。由于IMCSs拥有可供离子快速传输的短的分级孔、可供离子吸附的大量的微孔和导电性好的相互连接的结构,因此,当电流密度增加到20 A·g-1时,IMCSs的比容保持率为80.2%,显示了很好的速率性能。经10 000次循环充放电后,IMCSs的容量保持率仍达到94.2%,显示了优异的循环稳定性。此工作为合成高性能超级电容器用相互连接的中孔炭片提供了一个可行的方法,可以用廉价的稠环碳氢化合物,如,煤沥青和石油沥青为碳源。
  • Liu Y Z, Chen C M, Li Y F, et al. Crumpled reduced graphene oxide by flame-induced reduction of graphite oxide for supercapacitive energy storage[J]. Journal of Materials Chemistry A, 2014, 2(16):5730-5737.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Mater, 2008, 7:845-854.
    Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chem Soc Rev, 2012, 41:797-828.
    Zheng D F, Jia M Q, Xu B, et al. The simple preparation of a hierarchical porous carbon with high surface area for high performance supercapacitors[J]. New Carbon Materials, 2013, 28:151-155.
    Béguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Adv Mater, 2014, 26:2219-2251.
    Yan X L, Li X J, Yan Z F, et al. Porous carbons prepared by direct carbonization of MOFs for supercapacitors[J]. Appl Surf Sci, 2014, 308:306-310.
    Wang J C, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. J Mater Chem, 2012, 22:23710-23725.
    He X J, Li X J, Wang X T, et al. Efficient preparation of porous carbons from coal tar pitch for high performance supercapacitors[J]. New Carbon Materials, 2014, 29:493-502.
    Wang D W, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angew Chem Int Ed, 2008, 47:373-376.
    Xia Y D, Yang Z X, Mokaya R. Templated nanoscale porous carbons[J]. Nanoscale, 2010, 2:639-659.
    Jin J, Tanaka S, Egashira Y, et al. KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties[J]. Carbon, 2010, 48:1985-1989.
    Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402:276-279.
    Chen B, Eddaoudi M, Hyde S T, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001, 291:1021-1023.
    Pan L, Parker B, Huang X Y, et al. Zn(tbip) (H2tbip)=5-tert-Butyl Isophthalic Acid):A highly stable guest-free microporous metal organic framework with unique gas separation capability[J]. J Am Chem Soc, 2006, 128:4180-4181.
    Zou R Q, Sakurai H, Han S, et al. Probing the lewis acid sites and CO catalytic oxidation activity of the porous metal-organic polymer[Cu(5-methylisophthalate)] [J]. J Am Chem Soc, 2007, 129:8402-8403.
    Meng F, Fang Z G, Li Z X, et al. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors[J]. J Mater Chem A, 2013, 1:7235-7241.
    Amali A J, Sun J K, Xu Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage[J]. Chem Commun, 2014, 50:1519-1522.
    Zhang Y D, Lin B P, Sun Y, et al. Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. RSC Adv, 2015, 5:58100-58106.
    Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synthesis[J]. J Am Chem Soc, 2008, 130:5390-5391.
    Liu B, Shioyama H, Jiang H L, et al. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010, 48:456-463.
    Gonzalez J, Devi R N, Tunstall D P, et al. Deuterium NMR studies of framework and guest mobility in the metal-organic framework compound MOF-5, Zn4O(O2CC6H4CO2)3[J]. Micropor Mesopor Mater, 2005, 84:97-104.
    Hafizovic J, Bjørgen M, Olsbye U, et al. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities[J]. J Am Chem Soc, 2007, 129:3612-3620.
    Hu J, Wang H L, Gao Q M, et al. Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors[J]. Carbon, 2010, 48:3599-3606.
    Yu M X, Zhang L, He X J, et al. 3D interconnected porous carbons from MOF-5 for supercapacitors[J]. Mater Lett, 2016, 172:81-84.
    Huang L, Wang H, Chen J, et al. Synthesis, morphology control, and properties of porous metal-organic coordination polymers[J]. Micropor Mesopor Mater, 2003, 58:105-114.
    He X J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. J Mater Chem A, 2014, 2:19633-19640.
    Wang H, Gao Q, Hu J. High hydrogen storage capacity of porous carbons prepared by using activated carbon[J]. J Am Chem Soc, 2009, 131:7016-7022.
    Li M J, Liu C M, Cao H B, et al. KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors[J]. J Mater Chem A, 2014, 2:14844-14851.
    Comotti A, Bracco S, Sozzani P, et al. Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer[J]. J Am Chem Soc, 2008, 130:13664-13672.
    Muniandy L, Adam F, Mohamed A R, et al. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activationwith NaOH and KOH[J]. Micropor Mesopor Mater, 2014, 197:316-323.
    Lin Z Y, Waller G, Liu Y, et al. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction[J]. Adv Energy Mater, 2012, 2:884-888.
    Horikawa T, Sakao N, Sekida T, et al. Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption[J]. Carbon, 2012, 50:1833-1842.
    Biniak S, Szymanski G, Siedlewski J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon, 1997, 35:1799-1810.
    László K, Tombácz E, Josepovits K. Effect of activation on the surface chemistry of carbons from polymer precursors[J]. Carbon, 2001, 39:1217-1228.
    Yue Z R, Jiang W, Wang L, et al. Adsorption of precious metal ions onto electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37:1607-1618.
    Jiang L L, Sheng L Z, Long C L, et al. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors[J]. Adv Energy Mater, 2015, 5(15):1500771-1500779.
    Yan J, Wang Q, Lin C P, et al. Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances[J]. Adv Energy Mater, 2015, 4(13):1294-1305.
    He X J, Zhao N, Qiu J S, et al. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. J Mater Chem A, 2013, 1:9440-9448.
    Cheng X Y, Chen C, Zhang Z J, et al. High performance porous carbon through hard-soft dual templates for supercapacitor electrodes[J]. J Mater Chem A, 2013, 1:7379-7383.
    Hao P, Zhao Z H, Tian J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale, 2014, 6:12120-12129.
    Wang X T, Ma H, Zhang H B, et al. Interconnected mesoporous carbon sheet for supercapacitors from low-cost resources[J]. Mater Lett, 2015, 158:237-240.
    Moon G H, Shin Y, Choi D, et al. Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures[J]. Nanoscale, 2013, 5:6291-6296.
    Sánchez-González J, Stoeckli F, Centeno T A. The role of the electric conductivity of carbons in the electrochemical capacitor performance[J]. J Electroanal Chem, 2011, 657:176-180.
    Wang J, Shen L F, Ding B, et al. Fabrication of porous carbon spheres for high-performance electrochemical capacitors[J]. RSC Adv, 2014, 4:7538-7544.
    K tz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochim Acta, 2000, 45:2483-2498.
  • 加载中
图(1)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  48
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-28
  • 录用日期:  2017-06-28
  • 修回日期:  2017-06-06
  • 刊出日期:  2017-06-28

目录

    /

    返回文章
    返回