留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进浮动催化化学气相沉积法制备直径可控的多壁碳纳米管

李亚娟 马昌 康建立 史景利 石强 伍大恒

李亚娟, 马昌, 康建立, 史景利, 石强, 伍大恒. 改进浮动催化化学气相沉积法制备直径可控的多壁碳纳米管. 新型炭材料, 2017, 32(3): 234-241. doi: 10.1016/S1872-5805(17)60120-3
引用本文: 李亚娟, 马昌, 康建立, 史景利, 石强, 伍大恒. 改进浮动催化化学气相沉积法制备直径可控的多壁碳纳米管. 新型炭材料, 2017, 32(3): 234-241. doi: 10.1016/S1872-5805(17)60120-3
LI Ya-juan, MA Chang, KANG Jian-li, SHI Jing-li, SHI Qiang, WU Da-heng. Preparation of diameter-controlled multi-wall carbon nanotubes by an improved floating-catalyst chemical vapor deposition method. New Carbon Mater., 2017, 32(3): 234-241. doi: 10.1016/S1872-5805(17)60120-3
Citation: LI Ya-juan, MA Chang, KANG Jian-li, SHI Jing-li, SHI Qiang, WU Da-heng. Preparation of diameter-controlled multi-wall carbon nanotubes by an improved floating-catalyst chemical vapor deposition method. New Carbon Mater., 2017, 32(3): 234-241. doi: 10.1016/S1872-5805(17)60120-3

改进浮动催化化学气相沉积法制备直径可控的多壁碳纳米管

doi: 10.1016/S1872-5805(17)60120-3
基金项目: 天津市应用基础与前沿技术研究计划(4JCYBJC20900);天津市自然科学基金(16JCQNJC06300);国家自然科学基金(51502201).
详细信息
    作者简介:

    李亚娟,硕士研究生.E-mail:liyajuan57@126.com

    通讯作者:

    史景利,教授.E-mail:shijingli1963@163.com

  • 中图分类号: TQ127.1+1

Preparation of diameter-controlled multi-wall carbon nanotubes by an improved floating-catalyst chemical vapor deposition method

Funds: Tianjin Research Program of Application Foundation and Advanced Technology (4JCYBJC20900);Natural Science Foundation of Tianjin Province (16JCQNJC06300);National Natural Science Foundation of China (51502201).
  • 摘要: 采用改进的浮动催化化学气相沉法(FCCVD)制了直径可控的多壁碳纳米管(MWCNTs)。改进的FCCVD方法关键在于甲苯以气体的形式进入反应体系避免液体甲苯在高温下瞬间气化造成CNTs直径不可控。考察了二茂铁升华温度、载气中氢气含量,载气流量等因素对MWCNTs的直径影响。结果表明:改变二茂铁的升华温度可以控制CNTs的直径分布,当二茂铁升华温度从348 K升高到378 K时,MWCNTs的直径分布从30~130 nm降到60~90 nm;氢气的存在使得CNTs的直径大幅度的减小,当氢气含量为30 vol%时,碳纳米管的直径降至为20~40 nm;提高载气流速也使得CNTs直径随着载气流量的增加而逐渐减小。
  • Tessonnier J P, Su D S. Recent progress on the growth mechanism of carbon nanotubes:a review[J]. ChemSusChem, 2011, 4(7):824-847.
    Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes[J]. Science, 1996, 274(5293):1701-1703.
    Endo M, Hayashi T, Kim Y A, et al. Applications of carbon nanotubes in the twenty-first century[J]. Philosophical Transactions the Royal Society A, 2004, 362(1823):2223-2238.
    Olek M, Ostrander J, Jurga S, et al. Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies[J]. Nano Letters, 2004, 4(10):1889-1895.
    Hilding J,Grulke E A Sinnott S B, et al. Sorption of butane on carbon multi-wall nanotubes at room temperature[J]. Langmuir, 2001, 17:7540-7544.
    Liu Y Z, Li Y F, Yang Y G, et al. Preparation and properties of graphene oxide/carbon fiber/phenolic resin composites[J]. New Carbon Materials, 2012, 27(5):377-384.
    Zhang J, Hu Y S, Tessonnier J P, et al. CNFs@CNTs:superior carbon for electrochemical energy storage[J]. Advanced Materials, 2008, 20(8):1450-1455.
    Vander Wal R L, Ticih T M, Curtis V E. Diffusion flame synthesis of single-walled carbon nanotubes[J]. Chemical Physics Letters, 2000, 323(3):217-223.
    Endo M, Hayashi T, Kim Y A, et al. Development and application of carbon nanotubes[J]. Japanese Journal of Applied Physics, 2006, 45(6R):4883-4892.
    Dai H. Carbon nanotubes:opportunities and challenges[J]. Surface Science, 2002, 500(1):218-241.
    Schnorr J M, Swager T M. Emerging applications of carbon nanotubes[J]. Chemical Material, 2011, 23(3):646-57.
    Sinnott S B, Andrews R. Carbon nanotubes:synthesis, properties, and applications[J]. Critical Reviews Solid State Material Science, 2001, 26(3):145-249.
    Mura kami Y, Chiashi S, Miyauchi Y, et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy[J]. Chemical Physics Letters, 2004, 385(3):298-303.
    Satishkumar B C, Govindaraj A, Rao C N R. Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures:role of the metal nanoparticles produced in situ[J]. Chemical Physics Letters, 1999, 307(3):158-62.
    Zhang Q, Huang J Q, Zhao M Q, et al. Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres[J]. Carbon, 2008, 46(8):1152-1158.
    Su J, Yu Y, Che R C. Aligned array of N2-encapsulated multilevel branched carbon nanotubes[J]. Applied Physics A, 2008, 90(1):135-139.
    Kamalakaran R, Terrones M, Seeger T, et al. Synthesis of thick and crystalline nanotube arrays by spray pyrolysis[J]. Applied physics letters, 2000, 77(21):3385-3387.
    Mayne M, Grobert N, Terrones M, et al. Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols[J]. Chemical physics letters, 2001, 338(2):101-107.
    Gómez-Gualdrón D A, Balbuena P B. Characterization of carbon atomistic pathways during single-walled carbon nanotubes growth on supported metal nanoparticles[J]. Carbon, 2013, 57:298-309.
    Ohashi T, Ochiai T, Tokune T, et al. Increasing the length of a single-wall carbon nanotube forest by adding titanium to a catalytic substrate[J]. Carbon, 2013, 57:79-87.
    Zhang Q, Zhao M Q, Huang J Q, et al. Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition[J]. Carbon, 2009, 47:2600-2610.
    Cheng J, Zhou X P, Li F, et al. Preparation multi-walled carbon nanotubes by using[J]. Micronanoelectronic Technology, 2007, 44(7):111-112.
    Han D L, Zhao Y L, Zhao H B, et al. Prepared directional carbon nanotube array via chemical vapor deposition[J]. Acta Physica Sinica, 2007, 56(10):5958-5964.
    Koo's A A, Dowling M, Jurkschat K, et al. Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapor deposition[J]. Carbon, 2009, 47(1):30-37.
    Koós A A, Dillon F, Obraztsova E A, et al. Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes[J]. Carbon, 2010, 48(11):3033-3041.
    Koós A A, Nicholls R J, Dillon F, et al. Tailoring gas sensing properties of multi-walled carbon nanotubes by in situ modification with Si, P, and N[J]. Carbon, 2012, 50(8):2816-2823.
    Liu H, Zhang Y, Li R, et al. Aligned synthesis of multi-walled carbon nanotubes with high purity by aerosol-assisted chemical vapor deposition:effect of water vapor[J]. Applied Surf Science, 2010, 256(14):4692-4696.
    Singh C, Shaffer M S P, Windle A H. Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapor deposition method[J]. Carbon, 2003, 41(2):359-368.
    Meysami S S, Dillon F, Koós A A, et al. Aerosol-assisted chemical vapor deposition synthesis of multi-wall carbon nanotubes:I. mapping the reactor[J]. Carbon, 2013, 58:151-158.
    Zhang Q, Huang J Q, Zhao M Q, et al. Modulating the diameter of carbon nanotubes in array form via floating catalyst chemical vapor deposition[J]. Applied Physics A, 2009, 94(4):853-860.
    Castro C, Pinault M, Porterat D, et al. The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes[J]. Carbon, 2013, 61:585-594.
    Kuwana K, Saito K. Modeling CVD synthesis of carbon nanotubes:nanoparticle formation from ferrocene[J]. Carbon, 2005, 43:2088-95.
    Braun S, Romer F, Kraska T. Influence of the carrier gas molar mass on the particle formation in a vapor phase[J]. Journal Chemical Physics, 2009, 131:064308-064316.
    Turnbull A G. Thermochemistry of biscyclopentadienyl metal compounds[J]. Australian Journal of Chemistry, 1967, 20:2059-2067.
    Zhu H W, Cao A Y, Li X S, et al. Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature[J]. Applied Surface Science, 2001, 178:50-55.
  • 加载中
图(1)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  95
  • PDF下载量:  591
  • 被引次数: 0
出版历程
  • 录用日期:  2017-06-28
  • 刊出日期:  2017-06-28

目录

    /

    返回文章
    返回