留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶胶-凝胶一釜法Al2O3-C杂化气凝胶的合成和表征

张睿 蒋宁 段晓佳 金双玲 金鸣林

张睿, 蒋宁, 段晓佳, 金双玲, 金鸣林. 溶胶-凝胶一釜法Al2O3-C杂化气凝胶的合成和表征. 新型炭材料, 2017, 32(3): 258-264. doi: 10.1016/S1872-5805(17)60122-7
引用本文: 张睿, 蒋宁, 段晓佳, 金双玲, 金鸣林. 溶胶-凝胶一釜法Al2O3-C杂化气凝胶的合成和表征. 新型炭材料, 2017, 32(3): 258-264. doi: 10.1016/S1872-5805(17)60122-7
ZHANG Rui, JIANG Ning, DUAN Xiao-jia, JIN Shuang-ling, JIN Ming-lin. Synthesis and characterization of Al2O3-C hybrid aerogels by a one-pot sol-gel method. New Carbon Mater., 2017, 32(3): 258-264. doi: 10.1016/S1872-5805(17)60122-7
Citation: ZHANG Rui, JIANG Ning, DUAN Xiao-jia, JIN Shuang-ling, JIN Ming-lin. Synthesis and characterization of Al2O3-C hybrid aerogels by a one-pot sol-gel method. New Carbon Mater., 2017, 32(3): 258-264. doi: 10.1016/S1872-5805(17)60122-7

溶胶-凝胶一釜法Al2O3-C杂化气凝胶的合成和表征

doi: 10.1016/S1872-5805(17)60122-7
基金项目: 国家自然科学基金(50872033, U1332107, U1532105);中国科学院炭材料重点实验室基金(KFJJ0903);上海市地方高校能力建设项目(12160503600),上海市教委一流学科建设计划(J201212);上海应用技术大学复合材料校级重点建设项目(10210Q150001).
详细信息
    通讯作者:

    张睿,教授.E-mail:zhangrui@sit.edu.cn

  • 中图分类号: TB333

Synthesis and characterization of Al2O3-C hybrid aerogels by a one-pot sol-gel method

Funds: National Natural Science Foundation of China (50872033,U1332107,U1532105);Fund of Key Laboratory of Carbon Materials,Chinese Academy of Sciences (KFJJ0903);the Capacity Building Program of Shanghai Local Universities (12160503600);First-class Discipline Construction Fund of Shanghai Municipal Education Commission (J201212);Key Discipline Construction Fund of Composite Materials of Shanghai Institute of Technology (10210Q150001).
  • 摘要: 用Al(NO33·9H2O作为Al2O3源,间苯二酚-糠醛为碳源,环氧丙烷为凝胶促进剂,通过溶胶-凝胶方法一釜合成了湿凝胶,并经超临界正己烷干燥和碳化制备了Al2O3-C杂化气凝胶。研究了Al2O3含量、间苯二酚-糠醛浓度和环氧丙烷/铝摩尔比对所合成的杂化气凝胶孔隙性质的影响。结果表明,此杂化气凝胶均为中孔结构,其平均孔径小于20 nm,Al2O3属于γ-型结构但X射线衍射峰很宽。杂化气凝胶在Al2O3含量小于5.31 wt%和间苯二酚-糠醛浓度为10 g/mL时可形成整体块状。在其他条件相同的情况下,中孔孔容、BET比表面、外表面积和中孔孔径随环氧丙烷/铝摩尔比增加而增大。制备过程中凝胶的体积收缩率和炭化收率随Al2O3含量增加而增大,但密度随Al2O3含量增加在4.93 wt%处达到最大。中孔孔容和孔径以及外表面积在环氧丙烷/铝摩尔比为5和6时随间苯二酚-糠醛浓度增加而减小,而在环氧丙烷/铝摩尔比为4时随间苯二酚-糠醛浓度增加而增大。
  • Hudeinstein P, Sanchez C. Hybrid organic-inorganic materials:a land of multidisciplinarity[J]. J Mater Chem, 1996, 6:511-525.
    Sanchez C, Rozes L, Ribot F, Laberty-Robert C, et al. “Chimie douce”:A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials[J]. C R Chimie, 2010, 13:3-39.
    Tan CH, Cao J, Khattak AM, et al. High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2014, 270:28-33.
    Yuna S, Lee S, Shin C, et al. One-pot self-assembled, reduced graphene oxide/palladium nanoparticle hybrid aerogels for electrocatalytic applications[J]. Electrochimica Acta, 2015, 180:902-908.
    Singh V, Singh D. Polyvinyl alcohol-silica nanohybrids:An efficient carrier matrix for amylase immobilization[J]. Process Biochemistry, 2013, 48:96-102.
    Catauro M, Bollino F, Mozzati MC, et al. Structure and magnetic properties of SiO2/PCL novel sol-gel organic-inorganic hybrid materials[J]. Journal of Solid State Chemistry, 2013, 203:92-99.
    Maleki H, Durães L, Portugal A. Synthesis of light weight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications[J]. Microporous and Mesoporous Materials, 2014,197:116-129.
    Shao X, Lu W, Zhang R, et al. Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation[J]. Scientific Reports, 2013, 3:3018.
    周贝, 张睿, 郭全贵, 等. 有机/无机杂化制备低密度高中孔率炭气凝胶[J]. 新型炭材料, 2011, 26(2):117-122. (ZHOU Bei, ZHANG Rui, GUO Quan-Gui, et al. Preparation of low density and high mesoporosity carbon aerogels by an organic/inorganic hybrid method[J]. New Carbon Materials, 2011, 26(2):117-122.)
    Torma V, Peterlik H, Bauer U, et al. Mixed silica titania materials prepared from a single-source sol-gel precursor:a time-resolved SAXS study of the gelation, aging, supercritical drying, and calcination processes[J]. Chemistry of Materials, 2005, 17:3146-3153.
    Chen K, Bao Z, Du A, et al. Synthesis of resorcinol-formaldehyde/silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide[J]. Microporous and Mesoporous Materials, 2012, 149:16-24.
    Anasori B, Beidaghi M, Gogotsi Y. Graphene-transition metal oxide hybrid materials:Hybrid structures for energy storage[J]. Materials Today, 2014, 17(5):253-254.
    Pekala RW, Kong FM. Resorcinol-formaldehyde aerogels and their carbonized derivatives[J]. Polymer Preprint, 1989, 30:221-223.
    Clapsaddle BJ, Sprehn DW, Gash AE, et al. A versatile sol-gel synthesis route to metal-silicon mixed oxide nanocomposites that contain metal oxides as the major phase[J]. Journal of non-crystalline solids, 2004, 350:173-181.
    Baumann TF, Gash AE, Chinn SC, et al. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors[J]. Chemistry of Materials, 2005, 17(2):395-401.
    Singh KSW, Everett DH, Haul RAW, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985, 57(4):603-619.
  • 加载中
图(1)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  69
  • PDF下载量:  495
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-08
  • 录用日期:  2017-06-28
  • 修回日期:  2017-04-30
  • 刊出日期:  2017-06-28

目录

    /

    返回文章
    返回