留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硫酸为电解液的超级电容器木基活性炭电极材料的制备

Aleksandrs Volperts Galina Dobele Aivars Zhurinsh Darya Vervikishko Evgeny Shkolnikov Jurijs Ozolinsh

Aleksandrs Volperts, Galina Dobele, Aivars Zhurinsh, Darya Vervikishko, Evgeny Shkolnikov, Jurijs Ozolinsh. 基于硫酸为电解液的超级电容器木基活性炭电极材料的制备. 新型炭材料, 2017, 32(4): 319-326. doi: 10.1016/S1872-5805(17)60125-2
引用本文: Aleksandrs Volperts, Galina Dobele, Aivars Zhurinsh, Darya Vervikishko, Evgeny Shkolnikov, Jurijs Ozolinsh. 基于硫酸为电解液的超级电容器木基活性炭电极材料的制备. 新型炭材料, 2017, 32(4): 319-326. doi: 10.1016/S1872-5805(17)60125-2
Aleksandrs Volperts, Galina Dobele, Aivars Zhurinsh, Darya Vervikishko, Evgeny Shkolnikov, Jurijs Ozolinsh. Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte. New Carbon Mater., 2017, 32(4): 319-326. doi: 10.1016/S1872-5805(17)60125-2
Citation: Aleksandrs Volperts, Galina Dobele, Aivars Zhurinsh, Darya Vervikishko, Evgeny Shkolnikov, Jurijs Ozolinsh. Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte. New Carbon Mater., 2017, 32(4): 319-326. doi: 10.1016/S1872-5805(17)60125-2

基于硫酸为电解液的超级电容器木基活性炭电极材料的制备

doi: 10.1016/S1872-5805(17)60125-2
基金项目: Authors express gratitude to project ERAF 2OP/2.11.10/14/APIA/VIAA/050.
详细信息
    通讯作者:

    Aleksandrs Volperts,E-mail:volperts@edi.lv

  • 中图分类号: TQ127.1+1

Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte

Funds: Authors express gratitude to project ERAF 2OP/2.11.10/14/APIA/VIAA/050.
  • 摘要: 以NaOH为活化剂, 采用两步热化学过程制备出木基活性炭。将所制活性炭用作以硫酸为电解液的超级电容器电极材料。探讨了合成条件对活性炭孔结构和电化学性能。结果表明,在微孔中形成双电层电容,介孔和大孔则实现离子运输。在高的活化温度或高碱炭比下,材料被过度活化,导致高的介孔、大孔孔容,这增加了电解液的吸收,从而降低质量比电容。最佳的活性炭合成条件为,活化温度:600℃, 碱炭比:1.25。
  • Yu Chabot A V, Zhang J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications[M]. Boca Raton: Taylor & Francis Group; 2013.
    Ariyanayagam Kumarappa D. Advanced Electrode Materials for Electrochemical Supercapacitors[D], Open Access Dissertations and Theses; 2012.
    Jayalakshmi M, Balasubramanian K. Simple capacitors to supercapacitors-An overview[J]. Int J Electrochim Sci, 2008, 3: 1196-1217.
    Burke A. R&D considerations for the performance and application of electrochemical capacitors[J]. Electrochim Acta, 2007, 53: 1083-1091.
    Lipka S M, Swartz C R. Electrochemical capacitor carbons[Z]. Energeia, 2007, 18(5): 1-4.
    Frackowiak E. Supercapacitors based on carbon materials and ionic liquids[J]. J Braz Chem Soc, 2006, 17(6): 1074-1082.
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008, 7: 845-854.
    Xu B, Chen Y, Wei G, et al. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors[J]. Mater Chem Phys, 2010, 124: 504-509.
    Linares-Solano A, Lillo-Rodenas MA, Marko-Lozar JP, et al. NaOH and KOH for preparing activated carbons used in energy an environmental applications[J]. Int J Energ Environ Econ, 2012, 20(4): 59-91.
    He X, Geng Y, Qiu J, Zheng S, et al. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors[J]. Carbon, 2010, 48: 1662-1669.
    He X, Li R, Qiu J, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon, 2012, 50: 4911-4921.
    Tamarkina Y V. Thermo-induced reactions of coal with alkali metal hydroxides[J]. Chem Chem Tech, 2010;162: 70-80(in Russian).
    Lillo-Rodenas M A Cazorla-Amoros D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH. An insight into the chemical activation mechanism[J]. Carbon, 2003, 41: 267-275.
    Bleda-Martinez M J, Macia-Agullo J A, Lozano-Castello D, et al. Role of surface chemistry on electric double layer capacitance of carbon materials[J]. Carbon, 2005, 43(13): 2677-2684.
    Tamarkina Y V, Shendrik T G, Kucherenko V A, et al. Conversion of alexandriya brown coal into microporous carbons under alkali activation[J]. Journal of Siberian Federal University Chemistry, 2012, 5(1): 24-36(in Russian).
    Xu B, Wu F, Chen R, et al. Highly mesoporous and high surface area carbon: A high capacitance electrode material for EDLCs with various electrolytes[J]. Electrochim Commun, 2008, 10: 795-797.
    Zhang Z, Cui M, Lai Y, et al. Preparation and electrochemical characterization of activated carbons by chemical-physical activation[J]. J Cent South Univ Technol, 2009, 16: 91-95.
    Lota G, Centeno TA, Frackowiak E, et al. Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors[J]. Electrochim Acta, 2008, 53: 2210-2216.
    Cuhadaroglu D, Uygun OA. Production and characterization of activated carbon from a bituminous coal by chemical activation[J]. Afr J Biotechnol, 2008, 7(20): 3703-3710.
    Liao WC, Liao FS, Tsai CT, et al. Preparation of activated carbon for electric double layer capacitors[J]. China Steel Tec, 2012, 25: 36-41.
    Conway BE. Electrochemical Supercapacitors -Scientific Fundamentals and Technological Applications[M]. New York: Kluwer Acad., Plenum; 1999.
    Marsh H, Rodriguez-Reinoso F. Activated Carbon[M]. Amsterdam: Elsevier, 2006.
    Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production, a review[J]. Renew Sustain Energ Rev, 2007, 11: 1966-2005.
    Rodriguez-Reinoso F. Production and Applications of Activated Carbons[M]. In: Schuth F, Sing KSW, Weitkamp J, editors. Handbook of porous solids, Weinheim: Wiley-VCH; 2002, p. 1766-1782.
    Kalinicheva OA., Bogdanovich NI, Dobele GV. Pretreatment of wood raw materials in the synthesis of NaOH activated carbons[J]. Forest J, 2008, 2: 117-122(in Russian).
    Lillo-Rodenas MA, Marco-Lozar JP, Cazorla-Amoros D, et al. Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide[J]. J Anal Appl Pyrol, 2007, 80: 166-174.
    Mikova NM, Ivanov IP, Parfenov VA, et al. Influence of thermal and chemical modification conditions on properties of birchwood based carbon materials[J]. Siberian federal University J Chem, 2011, 4: 356-368(in Russian).
    Dobele G, Jakab E, Zoltan S, et al. Formation of nanoporous carbon materials in thermocatalytic synthesis conditions[J]. J Anal Appl Pyrol, 2013, 103: 173-180.
    Fryer JR. The micropore structure of disordered carbons determined by high-resolution electron-microscopy[J]. Carbon, 1981, 19: 431-439.
    Dubinin M. Microposous structures of carbon sorbents. General characteristics of micro- and supermicro pores of slit-like model[Z]. News of USSR Science Academy Chem, 1979, 8: 1691-1696(in Russian).
    Guryanov V V, Petuhova G A, Polyakov N S. Forecasting of microporous structure parameters and adsorption properties of activated carbons[Z]. News of Russian Science Academy Chem, 2001, 6: 933-939(in Russian).
    Kaneko K, Ishii C, Ruike M, et al. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons[J]. Carbon, 1992, 30(7): 1075-1088.
    Lewandowski A, Galinski M. Practical and theoretical limits for electrochemical double-layer capacitors[J]. J Power Sources, 2007, 173: 822-828.
    Lozano-Castello D, Marko-Lozar J.P, Bleda-Martinez M J, et al. Relevance of porosity and surface chemistry of superactivated carbons in capacitors[J]. Tanso, 2013, 256: 41-47.
    Izmailova M Y, Rychagov A Y, Denshikov K K, et al. Electrochemical capacitor with ionic liquid as electrolyte[J]. Electrochemistry, 2009, 45(8): 1014-1015.
    Izmailova M Y. Development of supercapacitor with ionic liquid 1-methyl-3-butylimideazolium tetraboronfluorborate[D]. PhD dissertation, Russian D.I Mendeleev Chemical-Technological University. Moscow, Russia, 2010(in Russian).
    Bansal R, Goyal M. Activated Carbons Adsorption[M]. Boca Raton: CRP Press Taylor & Francis Group; 2005.
    Dobele G, Telyseva G, Dizhbite T, et al. Method for obtaining carbon-based sorbent[P]. Patent LV146832013.
    Dobele G, Dizhbite T, Gil M V, et al. Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture[J]. Biomass Bioenerg, 2012, 46: 145-154.
    Volperts A, Mironova-Ulmane N, Sildos I, et al. Structure of nanoporous carbon materials for supercapacitors[J]. IOP Conf Ser: Mater Sci Eng, 2012, 38: 1-5.
    Atamanyuk I N, Vervykishko D E, Grigorenko A V, et al. Influence of technological aspects of electrodes production on electrochemical characteristics of supercapacitors with protic electrolyte[J]. Electrochem Energ J, 2014.
    Shkolnikov E, Sidorova E, Malakhov A, et al. Estimation of pore size distribution in MCM-41-type silica using a simple desorption technique[J]. Adsorption, 2011, 17(6): 911-918.
    Lankin A V, Norman G E, Stegailov V V. Atomistic simulation of the interaction of an electrolyte with graphite nanostructures in perspective supercapacitors[J]. High Temp, 2010, 48(6): 837-845.
    Kowal J, Avaroglu E, Chamekh F, et al. Detailed analysis of the self-discharge of supercapacitors[J]. J Power Sources, 2011, 196: 573-579.
    Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313: 1760-1763.
  • 加载中
图(1)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  80
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-29
  • 录用日期:  2017-08-31
  • 修回日期:  2017-08-03
  • 刊出日期:  2017-08-28

目录

    /

    返回文章
    返回