留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LB膜法制备氧化石墨烯-银微米线复合透明抗菌性薄膜

师利芳 刘君哲 杨俊和 蔡玲斐 史丽云 邱汉迅

师利芳, 刘君哲, 杨俊和, 蔡玲斐, 史丽云, 邱汉迅. LB膜法制备氧化石墨烯-银微米线复合透明抗菌性薄膜. 新型炭材料, 2017, 32(4): 344-351. doi: 10.1016/S1872-5805(17)60127-6
引用本文: 师利芳, 刘君哲, 杨俊和, 蔡玲斐, 史丽云, 邱汉迅. LB膜法制备氧化石墨烯-银微米线复合透明抗菌性薄膜. 新型炭材料, 2017, 32(4): 344-351. doi: 10.1016/S1872-5805(17)60127-6
SHI Li-fang, LIU Jun-zhe, YANG Jun-he, CAI Ling-fei, SHI Li-yun, QIU Han-xun. Langmuir-Blodgett assembly of transparent graphene oxide-silver microwire hybrid films with an antibacterial property. New Carbon Mater., 2017, 32(4): 344-351. doi: 10.1016/S1872-5805(17)60127-6
Citation: SHI Li-fang, LIU Jun-zhe, YANG Jun-he, CAI Ling-fei, SHI Li-yun, QIU Han-xun. Langmuir-Blodgett assembly of transparent graphene oxide-silver microwire hybrid films with an antibacterial property. New Carbon Mater., 2017, 32(4): 344-351. doi: 10.1016/S1872-5805(17)60127-6

LB膜法制备氧化石墨烯-银微米线复合透明抗菌性薄膜

doi: 10.1016/S1872-5805(17)60127-6
基金项目: 国家自然科学基金(51102170,51272157);上海浦江人才计划(13PJ1406400);中国博士后基金(2012M520912);上海博士后基金(13R21415500);上海科学基金(15JC1490700).
详细信息
    通讯作者:

    杨俊和,教授,E-mail:jhyang@usst.edu.cn

  • 中图分类号: TB33

Langmuir-Blodgett assembly of transparent graphene oxide-silver microwire hybrid films with an antibacterial property

Funds: NSFC (51102170,51272157);Shanghai Pujiang Talent Project (13PJ1406400);China Postdoctoral Science Foundation (2012M520912);Shanghai Postdoctoral Science Foundation (13R21415500);Shanghai Committee of Science and Technology (15JC1490700).
  • 摘要: 采用聚乙烯吡咯烷酮和十六烷硫醇对银微米线进行双亲性处理,得到具有双亲性能的银微米线,并采用LB膜法将氧化石墨烯和改性后的银微米线依次沉积在石英基底上,制备氧化石墨烯-银微米线复合薄膜。氧化石墨烯提高了银纳米线的粘附性能,并为银微米线释放具有抗菌性能的银离子提供了弱酸性环境,在两种材料的协同作用下,复合薄膜表现出透明度高、抗大肠杆菌性能好的特点。该工作将为新一代多功能透明、抗菌性薄膜的制备提供新思路。
  • M Aviv, I Berdicevsky, M Zilberman. Gentamicin-loaded bioresorbable films for prevention of bacterial infections associated with orthopedic implants[J]. Journal of Biomedical Materials Research Part A, 2007, 83: 10-19.
    M Ramstedt, N Cheng, O Azzaroni, et al. Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications[J]. Langmuir, 2007, 23: 3314-3321.
    B C Allison, B M Applegate, J P Youngblood. Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine[J]. Biomacromolecules, 2007, 8: 2995-2999.
    W Hu, C Peng, W Luo, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4: 4317-4324.
    S W Chook, C H Chia, S Zakaria, et al. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method[J]. Nanoscale Research Letters, 2012, 7: 1-7.
    L Yu, Y Zhang, B Zhang, et al. Enhanced antibacterial activity of silver nanoparticles/Halloysite nanotubes/graphene nanocomposites with sandwich-like structure[J]. Scientific Reports, 2014, 4: 1-5.
    S B Liu, T H Zeng, M Hofmann, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011, 5: 6971-6980.
    X Cai, M S Lin, S Z Tan, et al. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity[J]. Carbon, 2012, 50: 3407-3415.
    S Mei, H Wang, W Wang, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes[J]. Biomaterials, 2014, 35: 4255-4265.
    G F Cao, Y Sun, J G Chen, et al. Sutures modified by silver-loaded montmorillonite with antibacterial properties[J]. Applied Clay Science, 2014, 93-94: 102-106.
    A Rodríguez Cano, M Á Pacha Olivenza, R Babiano, et al. Non-covalent derivatization of aminosilanized titanium alloy implants[J]. Surface and Coatings Technology, 2014, 245: 66-73.
    I N Kholmanov, M D Stoller, J Edgeworth, et al. Nanostructured hybrid transparent conductive films with antibacterial properties[J]. ACS Nano, 2012, 6: 5157-5163.
    I K Moon, J I Kim, H Lee, et al. 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes[J]. Scientific Reports, 2013, 3: 1-7.
    I N Kholmanov, C W Magnuson, A E Aliev, et al. Improved electrical conductivity of graphene films integrated with metal nanowires[J]. Nano Letters, 2012, 12: 5679-5683.
    C Mayousse, C Celle, E Moreau, J F Mainguet, et al. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors[J]. Nanotechnology, 2013, 24: 1-7.
    M J Allen, V C Tung, R B Kaner. Honeycomb carbon: A review of graphene[J]. Chemical Reviews, 2010, 110:132-145.
    V Lee, L Whittaker, C Jaye, et al. Large-area chemically modified graphene films: Electrophoretic deposition and characterization by soft X-ray absorption spectroscopy[J]. Chemistry of Materials, 2009, 21: 3905-3916.
    A Tao, F Kim, C Hess, et al. Langmuir-blodget silver nanowire monolayer sensing using surface-enhanced raman spectroscopy[J]. Nano Letters, 2003, 3: 1229-1234.
    L Imperiali, K H Liao, C Clasen, et al. Interfacial rheology and structure of tiled graphene oxide sheets[J]. Langmuir, 2012, 28: 7990-8000.
    L F Shi, J H Yang, Z Huang, et al. Fabrication of transparent, flexible conducing graphene thin films via soft transfer printing method[J]. Applied Surface Science, 2013, 276: 437-446.
    L F Shi, J H Yang, T Yang, et al. Molecular level controlled fabrication of highly transparent conductive reduced graphene oxide/silver nanowire hybrid films[J]. RSC Advances, 2014, 4: 43270-43277.
    Q B Zheng, L F Shi, P Ma, et al. Structure control of ultra-large graphene oxide sheets by the Langmuir-blodgett method[J]. RSC Advances, 2013, 3: 12.
    T Yang, J H Yang, L F Shi, et al. Highly flexible transparent conductive graphene/single-walled carbon nanotube nanocomposite films produced by Langmuir-Blodgett assembly[J]. RSC Advances, 2015, 5: 23650-23657.
    Q B Zheng, W H Ip, X Y Lin, et al. Transparent conductive films consisting of ultralarge graphene sheets produced by langmuir-blodgett assembly[J]. ACS Nano, 2011, 5: 6039-6051.
    L J Cote, F Kim, J X Huang, Langmuir-blodgett assembly of graphite oxide single layers[J]. Journal of the American Chemical Society, 2009, 131: 1043-1049.
    A Tao, F Kim, C Hess, et al. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy[J]. Nano Letters, 2003, 3: 1229-1234.
    Q B Zheng, B Zhang, X Y Lin, et al. Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly[J]. Journal of Materials Chemistry, 2012, 22: 25072-25082.
    C Damm, H Munstedt, Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocomposites[J]. Applied Physics A-Materials Science & Processing, 2008, 91: 479-486.
    C Marambio-Jones, E M V Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research, 2010, 12: 1531-1551.
    N Duran, P D Marcato, R De Conti, et al. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action[J]. Journal of the Brazilian Chemical Society, 2010, 21: 949-959.
    S J Kazmi, M A Shehzad, S Mehmood, et al. Effect of varied Ag nanoparticles functionalized CNTs on its anti-bacterial activity against E. coli[J]. Sensors and Actuators A: Physical, 2014, 216: 287-294.
  • 加载中
图(1)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  101
  • PDF下载量:  379
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-30
  • 录用日期:  2017-08-31
  • 修回日期:  2017-08-09
  • 刊出日期:  2017-08-28

目录

    /

    返回文章
    返回