留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/泡孔氧化铝/环氧树脂复合材料导热性能

关芳兰 夏鹤 周一帆

关芳兰, 夏鹤, 周一帆. 石墨烯/泡孔氧化铝/环氧树脂复合材料导热性能[J]. 新型炭材料, 2019, 34(6): 587-592.
引用本文: 关芳兰, 夏鹤, 周一帆. 石墨烯/泡孔氧化铝/环氧树脂复合材料导热性能[J]. 新型炭材料, 2019, 34(6): 587-592.
GUAN Fang-lan, XIA He, ZHOU Yi-fan. Preparation and properties of graphene-epoxy/alumina foam composites[J]. NEW CARBON MATERIALS, 2019, 34(6): 587-592.
Citation: GUAN Fang-lan, XIA He, ZHOU Yi-fan. Preparation and properties of graphene-epoxy/alumina foam composites[J]. NEW CARBON MATERIALS, 2019, 34(6): 587-592.

石墨烯/泡孔氧化铝/环氧树脂复合材料导热性能

基金项目: 北京市教委面上项目(KM201810012005);北京服装学院2018年度‘实培计划’.
详细信息
    通讯作者:

    关芳兰,博士,副教授.E-mail:clygfl@bift.edu.cn

  • 中图分类号: TB33

Preparation and properties of graphene-epoxy/alumina foam composites

Funds: Scientific and Technology of General Project of Beijing Educational Committee(KM201810012005); 2018 Beijing Insititute of Fashion Technology ‘shipei plan’.
  • 摘要: 以环氧树脂为代表的高分子聚合物在电子设备、电子封装和航空航天领域中有着广泛的用途,但环氧树脂极低的热导率限制了其应用。本文以泡沫氧化铝为骨架,在其表面负载氧化石墨烯,600~1 000℃温度下,对氧化石墨烯进行热还原,制备不同浓度的石墨烯负载的泡沫氧化铝,进一步与环氧树脂复合,得到复合材料。对泡沫氧化铝陶瓷所负载的石墨烯进行了XRD、Raman、SEM表征,对复合材料的热导率和电导率进行了测试。结果表明:热还原温度越高,氧化铝泡孔表面的氧化石墨烯被还原越充分。由于泡孔氧化铝的互相联通的管道,提供了声子传输的通道,0.533%负载量石墨烯就可以使复合材料的热导率达到了2.11 W/m·K,电导率达到了45 S/m。
  • Ganguli S,Roy A K,Anderson D P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites[J]. Carbon, 2008, 46(5):806-817.
    Fu S Y, Feng X Q, Lauke B, et al. Effect of particle size,particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer[J]. Composites Part B Engineering, 2008, 39(6):933-961
    Omrani A, Simon L C, Rostami A A. The effects of alumina nanoparticle on the properties of an epoxy resin system[J]. Materials Chemistry & Physics, 2009, 114(1):145-150.
    S J Park, Jin F L, Lee J R. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil[J]. Materials Science & Engineering A, 2004, 374(1-2):109-114.
    Song S H,Park K H,Kim B H, et al. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization[J]. Advanced Materials, 2013, 25(5):732-737.
    Teng C C, Ma C C, Chiou M. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites[J]. Materials Chemistry and Physics, 2011, 126(3):722-728.
    Yang K, Gu M. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide[J]. Composites Part A Applied Science & Manufacturing, 2010, 41(2):215-221.
    Teng C C, Ma C C M, Chiou K C, et al. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride[J]. Composites Part B, 2012, 43(2):265-271.
    Zhou T, Wang X, Liu X, et al. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler[J]. Carbon, 2010, 48(4):1171-1176.
    Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:A review[J]. Progress in Polymer Science, 2011, 36(7):914-944.
    Chen G. Thermal conductivity and ballistic phonon transport in superlattices[C]//Aps March Meeting. APS March Meeting Abstracts, 1998.
    Du F P, Tang H, Huang D Y. Thermal conductivity of epoxy resin reinforced with magnesium oxide coated multiwalled carbon nanotubes[J]. International Journal of Ploymer Science, 2013, (15):9714-9722.
    He D, Bozlar M, Genestoux M, et al. Diameter- and length-dependent self-organizations of multi-walled carbon nanotubes on spherical alumina microparticles[J]. Carbon, 2010, 48(4):1159-1170.
    Teng C C, Ma M Chen-Chi, Lu C H, et al. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J]. Carbon, 2011, 49(15):5107-5116.
    H Im, Kim J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite[J]. Carbon, 2012, 50(15):5429-5440.
    Guan F L, Gui C X, Zhang H B, et al. Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide[J]. Composites Part B, 2016, 98:134-140.
    Yu A,Ramesh P,Sun X. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Advanced Materials, 2008, 20(24):4740-4744.
    Michael J McAllister, Je-Luen Li, Douglas H. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry Materials, 2007, 19(18):4396-4404
    Yang P,Li X,Zhao Y. Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons[J]. Physics Letter A,2013, 377:2141-2146.
    Huang X, Iizuka Tomonori,Jiang PK. Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites[J]. J Physical Chemistry C, 2012, 116(25):13629-13639.
    Hong JP, Yoon S W, Wang T H. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers[J]. Thermochimica Acta, 2012, 537(11):70-75.
    Kim J,Im H,Kim J M. Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites[J]. Journal of Materials Science, 2012, 47(3):1418-1426.
  • 加载中
计量
  • 文章访问数:  118
  • HTML全文浏览量:  25
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-05
  • 录用日期:  2020-01-03
  • 修回日期:  2019-12-03
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回