留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

催化剂对炭黑转变为纳米炭微球和碳管的影响

Vijayshankar Asokan Dorte Nørgaard Madsen Pawel Kosinski Velaug Myrseth

Vijayshankar Asokan, Dorte Nørgaard Madsen, Pawel Kosinski, Velaug Myrseth. 催化剂对炭黑转变为纳米炭微球和碳管的影响[J]. 新型炭材料, 2015, 30(1): 19-29. doi: 10.1016/S1872-5805(15)60172-X
引用本文: Vijayshankar Asokan, Dorte Nørgaard Madsen, Pawel Kosinski, Velaug Myrseth. 催化剂对炭黑转变为纳米炭微球和碳管的影响[J]. 新型炭材料, 2015, 30(1): 19-29. doi: 10.1016/S1872-5805(15)60172-X
Vijayshankar Asokan, Dorte Nørgaard Madsen, Pawel Kosinski, Velaug Myrseth. Transformation of carbon black into carbon nano-beads and nanotubes: the effect of catalysts[J]. NEW CARBON MATERIALS, 2015, 30(1): 19-29. doi: 10.1016/S1872-5805(15)60172-X
Citation: Vijayshankar Asokan, Dorte Nørgaard Madsen, Pawel Kosinski, Velaug Myrseth. Transformation of carbon black into carbon nano-beads and nanotubes: the effect of catalysts[J]. NEW CARBON MATERIALS, 2015, 30(1): 19-29. doi: 10.1016/S1872-5805(15)60172-X

催化剂对炭黑转变为纳米炭微球和碳管的影响

doi: 10.1016/S1872-5805(15)60172-X
详细信息
    通讯作者:

    Vijayshankar Asokan.E-mail:vijayshankar.matsci@gmail.com

  • 中图分类号: TQ127.1+1

Transformation of carbon black into carbon nano-beads and nanotubes: the effect of catalysts

  • 摘要: 以二茂铁和二茂镍为催化剂, 采用化学气相沉积法在1000℃下,炭黑 (CB)转变为炭纳米微球和碳管。利用XRD, SEM, TEM, HR-TEM 和 Raman等对样品进行表征。结果表明,二茂铁和二茂镍质量比不同,可得到形貌不同的纳米炭的结构。与单金属催化剂相比,采用双金属催化剂合成的纳米炭结构具有高结晶度。催化剂颗粒填充在碳管内部或包裹在碳管外部,主要取决于催化剂与炭黑的质量比。当炭黑:二茂铁:二茂镍为1:2:2时,得到结晶度高的催化剂包裹多壁纳米炭微球结构。
  • Iijima S. Helical microtubules of graphitic carbon
    [J]. Nature, 1991, 354(6348): 56-58.
    Ehlich R, Biro LP, Hertel IV. Growth of nanotubes by decomposition of C60 on transition metal surfaces
    [J]. Synthetic Metals, 1999, 103(1-3): 2486-2487.
    Nikolaev P, Bronikowski MJ, Bradley RK, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide
    [J]. Chemical Physics Letters, 1999, 313(1-2): 91-97.
    Lee Y T, Kim N S, Park J, et al. Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000℃
    [J]. Chemical Physics Letters, 2003, 372(5-6): 853-859.
    Bell MS, Teo KBK, Lacerda RG, et al. Carbon nanotubes by plasma-enhanced chemical vapor deposition
    [J]. Pure and Applied Chemistry, 2006, 78(6): 1117-1125.
    Kokai F, Nozaki I, Okada T, et al. Efficient growth of multi-walled carbon nanotubes by continuous-wave laser vaporization of graphite containing B4C
    [J]. Carbon, 2011, 49(4): 1173-1181.
    Kishinevsky S, Nikitenko SI, Pickup DM, et al. Catalytic transformation of carbon black to carbon nanotubes
    [J]. Chemistry of Materials, 2002, 14(11): 4498-4501.
    Doherty SP, Chang RPH. Synthesis of multiwalled carbon nanotubes from carbon black
    [J]. Applied Physics Letters, 2002, 81: 2466-2468.
    Buchholz DB, Doherty SP, Chang RPH. Mechanism for the growth of multiwalled carbon-nanotubes from carbon black
    [J]. Carbon, 2003, 41(8): 1625-1634.
    Chen Z-G, Li F, Ren W-C, et al. Double-walled carbon nanotubes synthesized using carbon black as the dot carbon source
    [J]. Nanotechnology, 2006, 1713: 3100-3104.
    Donnet JB, Oulanti H, Le Huu T. Mechanism growth of multiwalled carbon nanotubes on carbon black
    [J]. Diamond and Related Materials, 2008, 17(7-10): 1506-1512.
    Okuno H, Grivei E, Fabry F, Gruenberger TM, et al. Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process
    [J]. Carbon, 2004, 42(12-13): 2543-2549.
    Lian W, Song H, Chen X, et al. The transformation of acetylene black into onion-like hollow carbon nanoparticles at 1 000 ℃ using an iron catalyst
    [J]. Carbon, 2008, 46(3): 525-530.
    Sengupta J, Jacob C. The effect of Fe and Ni catalysts on the growth of multiwalled carbon nanotubes using chemical vapor deposition
    [J]. Journal of Nanoparticle Research, 2010, 12(2): 457-465.
    Zhang C, Li J, Shi C, et al. The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni-Fe alloy catalyst
    [J]. Carbon, 2011, 49(4): 1151-1158.
    Chiang W-H, Sankaran RM. The influence of bimetallic catalyst composition on single-walled carbon nanotube yield
    [J]. Carbon, 2012, 50(3): 1044-1150.
    Tsoufis T, Xidas P, Jankovic L, et al. Catalytic production of carbon nanotubes over Fe-Ni bimetallic catalysts supported on MgO
    [J]. Diamond and Related Materials, 2007, 16(1): 155-160.
    Lv R, Cao A, Kang F, et al. Single-crystalline permalloy nanowires in carbon nanotubes: enhanced encapsulation and magnetization
    [J]. The Journal of Physical Chemistry C, 2007, 111(30): 11475-11479.
    Harris PJF. Carbon Nanotube Science
    [J]. Cambridge University Press, 2009.
    Hiura H, Ebbesen TW, Tanigaki K, et al. Raman studies of carbon nanotubes
    [J]. Chemical Physics Letters, 1993, 202(6): 509-512.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, et al. Studying disorder in graphite-based systems by Raman spectroscopy
    [J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1290.
    Asokan V, Dorte NM, Velaug M, et al. Effect of temperature on the transformation of carbon black into nanotubes
    [J]. Advanced Materials Research, 2014, 875-877: 1565-1571.
    Cheng J, Zou XP, Zhu G, et al. Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties
    [J]. Solid State Communications, 2009, 149(39-40): 1619-1622.
    Ding F, Rosén A, Campbell EEB, et al. Graphitic encapsulation of catalyst particles in carbon nanotube production
    [J]. Journal of Physical Chemistry B, 2006, 110(15): 7666-7670.
    Qian W, Liu T, Wang Z, et al. Effect of adding nickel to iron-alumina catalysts on the morphology of as-grown carbon nanotubes
    [J]. Carbon, 2003, 41(13): 2487-2493.
    Rodriguez NM, Kim MS, Fortin F, et al. Carbon deposition on iron-nickel alloy particles
    [J]. Applied Catalysis A: General, 1997, 148(2): 265-282.
    Jourdain V, Bichara C. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition
    [J]. Carbon, 2013, 58: 2-39.
    Kang JL, Li JJ, Du XW, et al. Synthesis and growth mechanism of metal filled carbon nanostructures by CVD using Ni/Y catalyst supported on copper
    [J]. Journal of Alloys and Compounds, 2008, 456(1-2): 290-296.
  • 加载中
计量
  • 文章访问数:  605
  • HTML全文浏览量:  36
  • PDF下载量:  730
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-28
  • 录用日期:  2015-02-13
  • 修回日期:  2015-02-01
  • 刊出日期:  2015-02-28

目录

    /

    返回文章
    返回