留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn3O4-石墨烯气凝胶的高效制备及其储锂性能

高峰 覃仕辉 臧云浩 顾建峰 曲江英

高峰, 覃仕辉, 臧云浩, 顾建峰, 曲江英. Mn3O4-石墨烯气凝胶的高效制备及其储锂性能[J]. 新型炭材料, 2020, 35(2): 121-130. doi: 10.1016/S1872-5805(20)60479-6
引用本文: 高峰, 覃仕辉, 臧云浩, 顾建峰, 曲江英. Mn3O4-石墨烯气凝胶的高效制备及其储锂性能[J]. 新型炭材料, 2020, 35(2): 121-130. doi: 10.1016/S1872-5805(20)60479-6
GAO Feng, QIN Shi-hui, ZANG Yun-hao, GU Jian-feng, QU Jiang-ying. Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries[J]. NEW CARBON MATERIALS, 2020, 35(2): 121-130. doi: 10.1016/S1872-5805(20)60479-6
Citation: GAO Feng, QIN Shi-hui, ZANG Yun-hao, GU Jian-feng, QU Jiang-ying. Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries[J]. NEW CARBON MATERIALS, 2020, 35(2): 121-130. doi: 10.1016/S1872-5805(20)60479-6

Mn3O4-石墨烯气凝胶的高效制备及其储锂性能

doi: 10.1016/S1872-5805(20)60479-6
基金项目: 国家自然科学基金(U1610114);东莞理工学院博士启动项目(GB200902-31,C300501-072).
详细信息
    作者简介:

    高峰,副教授.E-mail:fenggao2003@163.com

    通讯作者:

    曲江英,副教授.E-mail:qujianggaofeng@163.com

  • 中图分类号: TB33

Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries

Funds: National Natural Science Foundation of China (U1610114); Scientific Research Foundation for Leading Scholars in Dongguan University of Technology (GB200902-31, GC300501-072).
  • 摘要: 以改进的Hummers法制备的Mn2+/氧化石墨烯悬浊液为原料,无需添加锰源,采用水热法得到Mn3O4含量可调的Mn3O4-石墨烯气凝胶(Mn3O4-GA)。得益于石墨烯气凝胶相互连通的三维导电网络以及Mn3O4纳米粒子和其间的强烈的耦合作用,Mn3O4-GA表现出了比Mn3O4-石墨烯粉末复合物(Mn3O4-G)更加优异的储锂性能,其中Mn3O4-GA-70(Mn3O4含量为70%)在100 mA·g-1的电流密度下其可逆比容量达到1 073 mA·h·g-1,在800 mA·g-1的电流密度下循环200次后其比容量为565 mA·h·g-1,保持率为85%。该方法为环境友好制备锰基石墨烯气凝胶提供新思路。
  • Dong Y, Yu M, Wang Z, et al. A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage[J]. Adv Funct Mater, 2016, 26(42):7590-7598.
    He X, Ma H, Wang J, et al. Porous carbon nanosheets from coal tar for high-performance supercapacitors[J]. J Power Sources, 2017, 357:41-46.
    Lou X W, Deng D, Lee J Y, et al. Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes[J]. Adv Mater, 2008, 20(2):258-262.
    Zheng F,Wei L. Synthesis of ultrafine Co3O4 nanoparticles encapsulated in nitrogen-doped porous carbon matrix as anodes for stable and long-life lithium ion battery[J]. J Alloys Compd, 2019, 790:955-962.
    Dong Y, Zhao Z, Wang Z, et al. Dually fixed SnO2 nanoparticles on graphene nanosheets by polyaniline coating for superior lithium storage[J]. ACS Appl Mater Interfaces, 2015, 7(4):2444-2451.
    Xie Z, Zhang Y, Yuan A, et al. Effects of lithium excess and SnO2 surface coating on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material for Li-ion batteries[J]. J Alloys Compd, 2019, 787:429-439.
    Ren L, Yao Y, Wang K, et al. Novel one-step in situ growth of SnO2 quantum dots on reduced graphene oxide and its application for lithium ion batteries[J]. J Solid State Chem, 2019, 273:128-131.
    Li Z, Wu G, Deng S, et al. Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode[J]. Chem Eng J, 2016, 283:1435-1442.
    Varghese B, Reddy M V, Yanwu Z, et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery[J]. Chem Mater, 2008, 20(10):3360-3367.
    Cheng L, Qiao D, Zhao P, et al. Template-free synthesis of mesoporous succulents-like TiO2/graphene aerogel composites for lithium-ion batteries[J]. Electrochim Acta, 2019, 300:417-425.
    Li R, Yue W,Chen X. Fabrication of porous carbon-coated ZnO nanoparticles on electrochemical exfoliated graphene as an anode material for lithium-ion batteries[J]. J Alloys Compd, 2019, 784:800-806.
    Li P, Liu Y, Liu J, et al. Facile synthesis of ZnO/mesoporous carbon nanocomposites as high-performance anode for lithium-ion battery[J]. Chem Eng J, 2015, 271:173-179.
    He X, Zhao N, Qiu J, et al. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. J Mater Chem A, 2013, 1(33):9440-9450.
    Zhang T, Zheng J, Liang Z, et al. Coordination competition-driven synthesis of triple-shell hollowα-Fe2O3 microspheres for lithium ion batteries[J]. Electrochim Acta, 2019, 306:151-158.
    Deng H, Jin S, Zhan L, et al. Morphology-controlled synthesis of Fe3O4/carbon nanostructures for lithium ion batteries[J]. New Carbon Mater, 2014, 29(4):301-308.
    Yang J, Liu W, Niu H, et al. Ultrahigh energy density battery-type asymmetric supercapacitors:NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots[J]. Nano Research, 2018, 11(9):4744-4758.
    Yang J, Xiao X, Chen P, et al. Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan[J]. Nano Energy, 2019, 58:455-465.
    Sun Y, Hu X, Luo W, et al. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries[J]. Adv Funct Mater, 2013, 23(19):2436-2444.
    Li X, Zhang W, Chen B, et al. Scalable TiO2 embedded sulfur bulks@MnO2 nanosheets composite cathode for long-cyclic lithium-sulfur batteries[J]. J Solid State Chem, 2019, 270:304-310.
    Gao F, Qu J, Zhao Z, et al. Easy synthesis of MnO@GS hybrids and their performance for lithium storage[J]. New Carbon Mater, 2014, 29(4):316-321.
    Li Y, Qu J, Gao F, et al. In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue[J]. Appl Catal B:Environ, 2015, 162(0):268-274.
    Wang H, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. J Am Chem Soc, 2010, 132:13978-13980.
    Li L, Guo Z, Du A, et al. Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties[J]. J Mater Chem, 2012, 22(8):3600-3605.
    Wang J G, Jin D, Zhou R, et al. Highly flexible graphene/Mn3O4 nanocomposite nembrane as advanced anodes for Li-Ion batteries[J]. ACS Nano, 2016, 10(6):6227-6234.
    Qu J Y, Gao F, Zhou Q, et al. Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors[J]. Nanoscale, 2013, 5(7):2999-3005.
    Qu J, Shi L, He C, et al. Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue[J]. Carbon, 2014, 66:485-492.
    Nardecchia S, Carriazo D, Ferrer M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:Synthesis and applications[J]. Chem Soc Rev, 2013, 42(2):794-830.
    Worsley M A, Pauzauskie P J, Olson T Y, et al. Synthesis of graphene aerogel with highelectrical conductivity[J]. J Am Chem Soc, 2010, 132(40):14067-14069.
    Zhang L, Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability[J]. J Phys Chem C, 2011, 115(34):17206-17212.
    Qin S, Liu D, Lei W, et al. Synthesis of an indium oxide nanoparticle embedded graphene three-dimensional architecture for enhanced lithium-ion storage[J]. J Mater Chem A, 2015, 3(35):18238-18243.
    Wang X, Bai H, Shi G. Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation[J]. J Am Chem Soc, 2011, 133(16):6338-6342.
    Gao J, Lowe M A, Abruna H D. Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries[J]. Chem Mater, 2011, 23(13):3223-3227.
    He X, Zhang H, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. J Mater Chem A, 2014, 2(46):19633-19640.
    Huang H W, Yu Q, Peng X S, et al. Single-unit-cell thick Mn3O4 nanosheets[J]. Chem Commun, 2011, 47(48):12831-12833.
    Gunay M, Baykal A, Toprak M S, et al. A green chemical synthesis and characterization of Mn3O4 nanoparticles[J]. J Supercond Novel Magn, 2012, 25(5):1535-1539.
    Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Adv Mater, 2013, 25(15):2219-2223.
    Gong Y, Yang S, Liu Z, et al. Graphene-network-backboned architectures for high-performance lithium storage[J]. Adv Mater, 2013, 25(29):3979-3984.
    Zhou Q, Zhao Z, Zhang Y, et al. Graphene sheets from graphitized anthracite coal:Preparation, decoration, and application[J]. Energy Fuels, 2012, 26(8):5186-5192.
    Kang H, Kulkarni A, Stankovich S, et al. Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques[J]. Carbon, 2009, 47(6):1520-1525.
    Wu Z, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6):3187-3194.
    Rao C N R, Biswas K, Subrahmanyam K S, et al. Graphene, the new nanocarbon[J]. J Mater Chem, 2009, 19(17):2457-2469.
    Marago O M, Bonaccorso F, Saija R, et al. Brownian motion of graphene[J]. ACS Nano, 2010, 4(12):7515-7523.
    Basko D M, Piscanec S, Ferrari A C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene[J]. Phys Rev B, 2009, 80(16):165413-165423.
    Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes[J]. Phys Rep, 2005, 409(2):47-99.
    Ni Z H, Wang Y Y, Yu T, et al. Raman spectroscopy and imaging of graphene[J]. Nano Research, 2008, 1(4):273-291.
    Lee J W, Hall A S, Kim J D, et al. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability[J]. Chem Mater, 2012, 24(6):1158-1164.
    Zhu G, Wang L, Lin H, et al. Walnut-Like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries[J]. Adv Funct Mater, 2018, 28(18):1800003-1800010.
    Zuo Y T, Wang G, Peng J, et al. Hybridization of graphene nanosheets and carbon-coated hollow Fe3O4 nanoparticles as a high-performance anode material for lithium-ion batteries[J]. J Mater Chem A, 2016, 4(7):2453-2460.
    Zhang X, Deng Y, Wang Y, et al. Nanofibers with MoS2 nanosheets encapsulated in carbon as a binder-free anode for superior lithium storage[J]. New Carbon Mater, 2018, 33(6):554-561.
    Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803):496-499.
    Pasero D, Reeves N, West A R. Co-doped Mn3O4:A possible anode material for lithium batteries[J]. J Power Sources, 2005, 141(1):156-158.
    Chae C, Kim J H, Kim J M, et al. Highly reversible conversion-capacity of MnOx-loaded ordered mesoporous carbon nanorods for lithium-ion battery anodes[J]. J Mater Chem, 2012,22(34):17870-17877.
    Liu H, Li Z H, Liang Y R, et al. Facile synthesis of MnO multi-core@nitrogen-doped carbon shell nanoparticles for high performance lithium-ion battery anodes[J]. Carbon, 2015, 84:419-425.
    Li K, Shua F, Guo X, et al. High performance porous MnO@C composite anode materials for lithium-ion batteries[J]. Electrochim Acta, 2016, 188:793-800.
    Sun Y, Lee H, Seh Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1(1):15008-15014.
    Kong D, Li X, Zhang Y, et al. Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries[J]. Energy Environ Sci, 2016, 9(3):906-911.
  • 加载中
图(1)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  48
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 录用日期:  2020-04-28
  • 修回日期:  2020-03-26
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回