留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜纳米颗粒修饰柔性石墨构建无酶葡萄糖传感器

李吉辉 唐嘉欣 卫洛 何帅杰 马力强 沈万慈 康飞宇 黄正宏

李吉辉, 唐嘉欣, 卫洛, 何帅杰, 马力强, 沈万慈, 康飞宇, 黄正宏. 铜纳米颗粒修饰柔性石墨构建无酶葡萄糖传感器[J]. 新型炭材料, 2020, 35(4): 410-419. doi: 10.1016/S1872-5805(20)60498-X
引用本文: 李吉辉, 唐嘉欣, 卫洛, 何帅杰, 马力强, 沈万慈, 康飞宇, 黄正宏. 铜纳米颗粒修饰柔性石墨构建无酶葡萄糖传感器[J]. 新型炭材料, 2020, 35(4): 410-419. doi: 10.1016/S1872-5805(20)60498-X
LI Ji-hui, TANG Jia-xin, WEI Luo, HE Shuai-jie, MA Li-qiang, SHEN Wan-ci, KANG Fei-yu, HUANG Zheng-hong. Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet[J]. NEW CARBON MATERIALS, 2020, 35(4): 410-419. doi: 10.1016/S1872-5805(20)60498-X
Citation: LI Ji-hui, TANG Jia-xin, WEI Luo, HE Shuai-jie, MA Li-qiang, SHEN Wan-ci, KANG Fei-yu, HUANG Zheng-hong. Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet[J]. NEW CARBON MATERIALS, 2020, 35(4): 410-419. doi: 10.1016/S1872-5805(20)60498-X

铜纳米颗粒修饰柔性石墨构建无酶葡萄糖传感器

doi: 10.1016/S1872-5805(20)60498-X
基金项目: 国家自然科学基金(51672151);矿物加工科学与技术国家重点实验室开放基金资助(BGRIMM-KJSKL-2019-19);中央高校基本科研业务费专项资金资助(2020YQHH09).
详细信息
    作者简介:

    李吉辉,博士,讲师.E-mail:lijihuisci@outlook.com

    通讯作者:

    黄正宏,博士,教授.E-mail:zhhuang@mail.tsinghua.edu.cn

  • 中图分类号: TB33

Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet

Funds: National Natural Science Foundation of China (51672151), Open Foundation of State Key Laboratory of Mineral Processing (BGRIMM-KJSKL-2019-19), Fundamental Research Funds for the Central Universities (2020YQHH09).
  • 摘要: 柔性石墨片(FGS)具备优良的导电性与柔韧性,可作为葡萄糖传感器的自支撑载体,解决由于使用黏结剂降低传感器性能的问题。本文采用水热法,使用抗坏血酸还原硫酸铜,在FGS上复合铜纳米颗粒构建Cu/FGS自支撑无酶葡萄糖传感器,在线性范围0.1~3.4 mmol/L内具有较高的灵敏度7 254.1 μA·mM-1·cm-2R2=0.996 1),较低的检测限1.05 μmol/L;在线性范围3.4~5.6 mmol/L灵敏度为3 804.5 μA·mM-1·cm-2R2=0.9995)。此外,该电极还有较好的抗干扰性、重复性及稳定性。
  • Wilson R, Turner A P F. Glucose oxidase:An ideal enzyme[J]. Biosensors and bioelectronics, 1992, 7(3):165-185.
    Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors[J]. Analytica Chimica Acta, 2006, 556(1):46-57.
    Luo J, Jiang S, Zhang H, et al. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode[J]. Analytica Chimica Acta, 2012, 709(2):47-53.
    Zhang L, Ye C, Li X, et al. A CuNi/C nanosheet array based on a metal-organic framework derivate as a supersensitive non-Enzymatic Glucose Sensor[J]. Nanowei KuaiBao (English), 2018, 10(2).
    Malhotra S, Tang Y, Varshney P K. Non-enzymatic glucose sensor of high sensitivity fabricated with direct deposition of Au particles on polyvinylferrocene film modified Pt electrode[J]. 2019:1-10.
    Wang H, Wang X, Zhang X, et al. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires[J]. Biosensors & Bioelectronics, 2010, 25(1):142-146.
    Xue Y, Yong H, Zhou Z, et al. Non-enzymatic glucose biosensor based on reduction graphene oxide-persimmon tannin-Pt-Pd nanocomposite[J]. IOP Conference Series Materials Science and Engineering, 2018:382.
    Liu M, Liu R, Chen W. Graphene wrapped Cu2O nanocubes:Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability[J]. Biosensors and Bioelectronics, 2013, 45(Complete):206-212.
    Yang S, Li G, Wang D, et al. Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide:A three-dimensional hybrid for nonenzymatic glucose sensor[J]. Sensors and Actuators B:Chemical, 2017, 238:588-595.
    Huang X, Leng T, Zhu M, et al. Highly flexible and conductive printed graphene for wireless wearable communications applications[J]. Scientific Reports, 2015, 5:18298.
    Hadi M, Ali A N, Rahim M, et al. Direct growth of ternary copper nickel cobalt oxide nanowires as binder-free electrode on carbon cloth for nonenzymatic glucose sensing[J]. Microchemical Journal, 2018, 142:343-351.
    Ma P, Ma X, Suo Q, et al. Cu NPs@NiF electrode preparation by rapid one-step electrodeposition and its sensing performance for glucose[J]. Sensors and Actuators B:Chemical, 2019, 292:203-209.
    Zhang Z. Application and development of expandable graphite in flame retardant materials[J]. Fire Technique and Products Information, 2001(7):21-23.
    Zheng B, Wang R,Liu Q, et al. The application progress of expanded graphite and its composite material in water treatment[J]. New Chemical Materials, 2017(6):239-241.
    Cao N, Shen W, Jin C. Experimental study on the removal of oily substances from water by new graphite materials[J]. China Environmental Science, 1997, 17(2):188-190.
    Xia K, Jian M, Zhang Y. Advances in wearable and flexible conductors based on nanocarbon materials[J]. Acta Physico-Chimica Sinica, 2016, 32(10):2427-2446.
    Qingming L, Kazuaki N, Kensuke K, et al. Effects of reaction parameters on the preparation of submicron Cu particles by liquid phase reduction method and the study of reaction mechanism[J]. Powder Technology, 2013, 241(Complete):98-104.
    Zhang M, Huo D, Sun X, et al. Preparation of Cu micro/nanoparticles with ascorbic acid by liquid phase reduction method[J]. The Chinese Journal of Nonferrous Metals, 2017(4):747-752.
    Zhao J, Wei L, Peng C, et al. A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes[J]. Biosensors and Bioelectronics, 2013, 47(Complete):86-91.
    J Wang, W D Zhang. Fabrication of CuO nanoplate lets for highly sensitive enzyme-free determination of glucose[J]. Electrochim Acta, 2011, 56:7510-7516.
    Wang B, Wu Y, Chen Y, et al. Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose[J]. Sensors and Actuators B:Chemical, 2017, 238:802-808.
    Torto N, Ruzgas T, Gorton L. Electrochemical oxidation of mono-and disaccharides at fresh as well as oxidized copper electrodes in alkaline media[J]. Journal of Electroanalytical Chemistry, 1999, 464(2):252-258.
    Jiang D, Liu Q, Wang K, et al. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene[J]. Biosensors and Bioelectronics, 2014, 54(Complete):273-278.
    Li Zhang, Junyi Zhang, Chunli Yang, et al. Freestanding Cu nanowire arrays on Ti/Cr/Si substrate as tough nonenzymatic glucose sensors[J]. RSC Adv. 2015, 5(101):82998-83003.
    Zhao Y, He Z, Yan Z. Copper@carbon coaxial nanowires synthesized by hydrothermal carbonization process from electroplating wastewater and their use as an enzyme-free glucose sensor[J]. The Analyst, 2013, 138(2):559-68.
  • 加载中
图(1)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  43
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-03
  • 修回日期:  2020-07-05
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回