留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜纳米颗粒修饰柔性石墨构建无酶葡萄糖传感器

李吉辉 唐嘉欣 卫洛 何帅杰 马力强 沈万慈 康飞宇 黄正宏

李吉辉, 唐嘉欣, 卫洛, 何帅杰, 马力强, 沈万慈, 康飞宇, 黄正宏. 铜纳米颗粒修饰柔性石墨构建无酶葡萄糖传感器. 新型炭材料, 2020, 35(4): 410-419. doi: 10.1016/S1872-5805(20)60498-X
引用本文: 李吉辉, 唐嘉欣, 卫洛, 何帅杰, 马力强, 沈万慈, 康飞宇, 黄正宏. 铜纳米颗粒修饰柔性石墨构建无酶葡萄糖传感器. 新型炭材料, 2020, 35(4): 410-419. doi: 10.1016/S1872-5805(20)60498-X
LI Ji-hui, TANG Jia-xin, WEI Luo, HE Shuai-jie, MA Li-qiang, SHEN Wan-ci, KANG Fei-yu, HUANG Zheng-hong. Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet. New Carbon Mater., 2020, 35(4): 410-419. doi: 10.1016/S1872-5805(20)60498-X
Citation: LI Ji-hui, TANG Jia-xin, WEI Luo, HE Shuai-jie, MA Li-qiang, SHEN Wan-ci, KANG Fei-yu, HUANG Zheng-hong. Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet. New Carbon Mater., 2020, 35(4): 410-419. doi: 10.1016/S1872-5805(20)60498-X

铜纳米颗粒修饰柔性石墨构建无酶葡萄糖传感器

doi: 10.1016/S1872-5805(20)60498-X
基金项目: 国家自然科学基金(51672151);矿物加工科学与技术国家重点实验室开放基金资助(BGRIMM-KJSKL-2019-19);中央高校基本科研业务费专项资金资助(2020YQHH09).
详细信息
    作者简介:

    李吉辉,博士,讲师.E-mail:lijihuisci@outlook.com

    通讯作者:

    黄正宏,博士,教授.E-mail:zhhuang@mail.tsinghua.edu.cn

  • 中图分类号: TB33

Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet

Funds: National Natural Science Foundation of China (51672151), Open Foundation of State Key Laboratory of Mineral Processing (BGRIMM-KJSKL-2019-19), Fundamental Research Funds for the Central Universities (2020YQHH09).
  • 摘要: 柔性石墨片(FGS)具备优良的导电性与柔韧性,可作为葡萄糖传感器的自支撑载体,解决由于使用黏结剂降低传感器性能的问题。本文采用水热法,使用抗坏血酸还原硫酸铜,在FGS上复合铜纳米颗粒构建Cu/FGS自支撑无酶葡萄糖传感器,在线性范围0.1~3.4 mmol/L内具有较高的灵敏度7 254.1 μA·mM-1·cm-2R2=0.996 1),较低的检测限1.05 μmol/L;在线性范围3.4~5.6 mmol/L灵敏度为3 804.5 μA·mM-1·cm-2R2=0.9995)。此外,该电极还有较好的抗干扰性、重复性及稳定性。
  • Wilson R, Turner A P F. Glucose oxidase:An ideal enzyme[J]. Biosensors and bioelectronics, 1992, 7(3):165-185.
    Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors[J]. Analytica Chimica Acta, 2006, 556(1):46-57.
    Luo J, Jiang S, Zhang H, et al. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode[J]. Analytica Chimica Acta, 2012, 709(2):47-53.
    Zhang L, Ye C, Li X, et al. A CuNi/C nanosheet array based on a metal-organic framework derivate as a supersensitive non-Enzymatic Glucose Sensor[J]. Nanowei KuaiBao (English), 2018, 10(2).
    Malhotra S, Tang Y, Varshney P K. Non-enzymatic glucose sensor of high sensitivity fabricated with direct deposition of Au particles on polyvinylferrocene film modified Pt electrode[J]. 2019:1-10.
    Wang H, Wang X, Zhang X, et al. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires[J]. Biosensors & Bioelectronics, 2010, 25(1):142-146.
    Xue Y, Yong H, Zhou Z, et al. Non-enzymatic glucose biosensor based on reduction graphene oxide-persimmon tannin-Pt-Pd nanocomposite[J]. IOP Conference Series Materials Science and Engineering, 2018:382.
    Liu M, Liu R, Chen W. Graphene wrapped Cu2O nanocubes:Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability[J]. Biosensors and Bioelectronics, 2013, 45(Complete):206-212.
    Yang S, Li G, Wang D, et al. Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide:A three-dimensional hybrid for nonenzymatic glucose sensor[J]. Sensors and Actuators B:Chemical, 2017, 238:588-595.
    Huang X, Leng T, Zhu M, et al. Highly flexible and conductive printed graphene for wireless wearable communications applications[J]. Scientific Reports, 2015, 5:18298.
    Hadi M, Ali A N, Rahim M, et al. Direct growth of ternary copper nickel cobalt oxide nanowires as binder-free electrode on carbon cloth for nonenzymatic glucose sensing[J]. Microchemical Journal, 2018, 142:343-351.
    Ma P, Ma X, Suo Q, et al. Cu NPs@NiF electrode preparation by rapid one-step electrodeposition and its sensing performance for glucose[J]. Sensors and Actuators B:Chemical, 2019, 292:203-209.
    Zhang Z. Application and development of expandable graphite in flame retardant materials[J]. Fire Technique and Products Information, 2001(7):21-23.
    Zheng B, Wang R,Liu Q, et al. The application progress of expanded graphite and its composite material in water treatment[J]. New Chemical Materials, 2017(6):239-241.
    Cao N, Shen W, Jin C. Experimental study on the removal of oily substances from water by new graphite materials[J]. China Environmental Science, 1997, 17(2):188-190.
    Xia K, Jian M, Zhang Y. Advances in wearable and flexible conductors based on nanocarbon materials[J]. Acta Physico-Chimica Sinica, 2016, 32(10):2427-2446.
    Qingming L, Kazuaki N, Kensuke K, et al. Effects of reaction parameters on the preparation of submicron Cu particles by liquid phase reduction method and the study of reaction mechanism[J]. Powder Technology, 2013, 241(Complete):98-104.
    Zhang M, Huo D, Sun X, et al. Preparation of Cu micro/nanoparticles with ascorbic acid by liquid phase reduction method[J]. The Chinese Journal of Nonferrous Metals, 2017(4):747-752.
    Zhao J, Wei L, Peng C, et al. A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes[J]. Biosensors and Bioelectronics, 2013, 47(Complete):86-91.
    J Wang, W D Zhang. Fabrication of CuO nanoplate lets for highly sensitive enzyme-free determination of glucose[J]. Electrochim Acta, 2011, 56:7510-7516.
    Wang B, Wu Y, Chen Y, et al. Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose[J]. Sensors and Actuators B:Chemical, 2017, 238:802-808.
    Torto N, Ruzgas T, Gorton L. Electrochemical oxidation of mono-and disaccharides at fresh as well as oxidized copper electrodes in alkaline media[J]. Journal of Electroanalytical Chemistry, 1999, 464(2):252-258.
    Jiang D, Liu Q, Wang K, et al. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene[J]. Biosensors and Bioelectronics, 2014, 54(Complete):273-278.
    Li Zhang, Junyi Zhang, Chunli Yang, et al. Freestanding Cu nanowire arrays on Ti/Cr/Si substrate as tough nonenzymatic glucose sensors[J]. RSC Adv. 2015, 5(101):82998-83003.
    Zhao Y, He Z, Yan Z. Copper@carbon coaxial nanowires synthesized by hydrothermal carbonization process from electroplating wastewater and their use as an enzyme-free glucose sensor[J]. The Analyst, 2013, 138(2):559-68.
  • 加载中
图(1)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  88
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-03
  • 修回日期:  2020-07-05
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回