留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯腈基炭纤维对比分析:(一)微观结构

李登华 吕春祥 郝俊杰 王惠民

李登华, 吕春祥, 郝俊杰, 王惠民. 聚丙烯腈基炭纤维对比分析:(一)微观结构[J]. 新型炭材料, 2020, 35(6): 793-801. doi: 10.1016/S1872-5805(20)60527-3
引用本文: 李登华, 吕春祥, 郝俊杰, 王惠民. 聚丙烯腈基炭纤维对比分析:(一)微观结构[J]. 新型炭材料, 2020, 35(6): 793-801. doi: 10.1016/S1872-5805(20)60527-3
LI Deng-hua, LU Chun-xiang, HAO Jun-jie, WANG Hui-min. A comparative analysis of polyacrylonitrile-based carbon fibers: (I) Microstructures[J]. NEW CARBON MATERIALS, 2020, 35(6): 793-801. doi: 10.1016/S1872-5805(20)60527-3
Citation: LI Deng-hua, LU Chun-xiang, HAO Jun-jie, WANG Hui-min. A comparative analysis of polyacrylonitrile-based carbon fibers: (I) Microstructures[J]. NEW CARBON MATERIALS, 2020, 35(6): 793-801. doi: 10.1016/S1872-5805(20)60527-3

聚丙烯腈基炭纤维对比分析:(一)微观结构

doi: 10.1016/S1872-5805(20)60527-3
基金项目: 山西省重点研发计划项目(201903D121005);山西交通控股集团有限公司科技项目(18-JKKJ-22、19-JKKJ-53);山西省科技重大专项(20181101019).
详细信息
    通讯作者:

    李登华,博士,高级工程师.E-mail:yob2846@163.com

  • 中图分类号: TQ342+.74

A comparative analysis of polyacrylonitrile-based carbon fibers: (I) Microstructures

Funds: Key Research and Development (R&D) Projects of Shanxi Province (201903D121005); Project of Shanxi Transportation Holdings Group Co. Ltd. (18-JKKJ-22,19-JKKJ-53); Science and Technology Major Project of Shanxi Province (20181101019).
  • 摘要: 利用X射线广角衍射/小角散射、Raman光谱及高分辨透射显微镜对不同型号聚丙烯腈基炭纤维的晶态结构、孔结构、径向结构不均匀性、石墨化度、内部残余应力、结构取向性及分形现象进行了对比分析。结果表明,MJ炭纤维的微晶结构比T系列提升明显,内部残余应力逐步释放,结构取向性显著提升,石墨化程度也显著增强;但其微孔尺寸有所增大,径向结构不均匀性增加,体现了石墨化过程对炭纤维微观结构的显著影响。
  • Ruland W. Carbon fibers[J]. Adv Mater, 1990, 2(11):528-536.
    Rennhofer H, Loidl D, Puchegger S, et al. Structural development of PAN-based carbon fibers studied by in situ X-ray scattering at high temperatures under load[J]. Carbon, 2010, 48(4):964-971.
    Diefendorf R J, Tokarsky E. High-performance carbon fibers[J]. Polymer Engineering & Science, 1975, 15(3):150-159.
    Guigon M, Oberlin A, Desarmot G. Microtexture and structure of some high tensile strength, PAN-base carbon fibres[J]. Fibre Sci Technol, 1984, 20(1):55-72.
    Johnson D J, Tyson C N. The fine structure of graphitized fibres[J]. J Phys D Appl Phys, 1969, 2(6):787.
    Li D H, Lu C X, Wu G P, et al. Heat-induced internal strain relaxation and its effect on the microstructure of polyacrylonitrile-based carbon fiber[J]. J Mater Sci Technol, 2014, 30(10):1051-1058.
    Li D, Lu C, Du S, et al. Structural features of various kinds of carbon fibers as determined by small-angle X-ray scattering[J]. Appl Phys A, 2016, 122(11):956.
    Li D H, Lu C X, Wu G P, et al. Structural heterogeneity and its influence on the tensile fracture of PAN-based carbon fibers[J]. RSC Adv, 2014, 4(105):60648-60651.
    Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability, 2007, 92(8):1421-1432.
    Zhang M, Ogale A A. Carbon fibers from dry-spinning of acetylated softwood kraft lignin[J]. Carbon, 2014, 69(0):626-629.
    Li C, Xian G. Experimental and modeling study of the evolution of mechanical properties of PAN-based carbon fibers at elevated temperatures[J]. Materials, 2019, 12(5):724.
    Li W, Long D H, Miyawaki J, et al. Structural features of polyacrylonitrile-based carbon fibers[J]. J Mater Sci, 2012, 47(2):919-928.
    Liu F, Wang H, Xue L, et al. Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization[J]. J Mater Sci, 2008, 43(12):4316-4322.
    Li D H, Lu C X, Wu G P, et al. Structural evolution during the graphitization of polyacrylonitrile-based carbon fiber as revealed by small-angle X-ray scattering[J]. J Appl Cryst, 2014, 47(6):1809-1818.
    Guigon M, Oberlin A. Heat-treatment of high tensile strength PAN-based carbon fibres:Microtexture, structure and mechanical properties[J]. Fibre Sci Technol, 1986, 27(1):1-23.
    Dresselhaus M, Dresselhaus G, Pimenta M, et al. Raman scattering in carbon materials[J]. Analytical applications of Raman spectroscopy, 1999, 367-434.
    Mallet-Ladeira P, Puech P, Toulouse C, et al. A Raman study to obtain crystallite size of carbon materials:A better alternative to the Tuinstra-Koenig law[J]. Carbon, 2014, 80(1):629-639.
    Johnson J W, Marjoram J R, Rose P G. Stress graphitization of polyacrylonitrile based carbon fibre[J]. Nature, 1969, 221(5178):357-368.
    Ruland W. Small-angle scattering of two-phase Systems:Determination and Significance of Systematic Deviations from Porod's Law[J]. J Appl Cryst, 1971, 4(1):70-73.
    Cohaut N, Guet J M, Diduszko R, et al. SAXS investigations on the porosity of pitch based carbon fibres[J]. Carbon, 1996, 34(5):674-6.
    Ruland W. Apparent fractal dimensions obtained from small-angle scattering of carbon materials[J]. Carbon, 2001, 39(2):323-334.
    Schmidt P. Small-angle scattering studies of disordered, porous and fractal systems[J]. J Appl Cryst, 1991, 24(5):414-435.
    Bale H D, Schmidt P W. Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties[J]. Physical Review Letters, 1984, 53(6):596-609.
    Teixema J. Small-angle scattering by fractal systems[J]. Journal of Applied Crystallography, 1988, 21(6):781-785.
    Kaneko K, Sato M, Suzuki T, et al. Surface fractal dimension of microporous carbon fibres by nitrogen adsorption[J]. J Chem Soc Faraday T, 1991, 87(1):179-184.
    Johnson D J, Tomizuka I, Watanabe O. The fine structure of pitch-based carbon fibres[J]. Carbon, 1975, 13(6):529-534.
  • 加载中
图(1)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  30
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-26
  • 修回日期:  2020-07-16
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回