留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure

JIN Heng-chao SUN Qian WANG Ji-tong MA Chen LING Li-cheng QIAO Wen-ming

金恒超, 孙骞, 王际童, 马成, 凌立成, 乔文明. 新型核壳结构硅碳复合负极材料的制备及电化学性能[J]. 新型炭材料, 2021, 36(2): 390-400. doi: 10.1016/S1872-5805(21)60023-15
引用本文: 金恒超, 孙骞, 王际童, 马成, 凌立成, 乔文明. 新型核壳结构硅碳复合负极材料的制备及电化学性能[J]. 新型炭材料, 2021, 36(2): 390-400. doi: 10.1016/S1872-5805(21)60023-15
JIN Heng-chao, SUN Qian, WANG Ji-tong, MA Chen, LING Li-cheng, QIAO Wen-ming. Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure[J]. NEW CARBOM MATERIALS, 2021, 36(2): 390-400. doi: 10.1016/S1872-5805(21)60023-15
Citation: JIN Heng-chao, SUN Qian, WANG Ji-tong, MA Chen, LING Li-cheng, QIAO Wen-ming. Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure[J]. NEW CARBOM MATERIALS, 2021, 36(2): 390-400. doi: 10.1016/S1872-5805(21)60023-15

新型核壳结构硅碳复合负极材料的制备及电化学性能

doi: 10.1016/S1872-5805(21)60023-15
详细信息
  • 中图分类号: TB33

Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure

Funds: National Science Foundation of China (U1710252, 21978097), and China Petrochemical Company Limited Fund (218025)
More Information
  • 摘要: 通过对氧化硅预处理得到多组分硅pSi(Si、SiO、SiO2),再利用化学气相沉积法(CVD)设计了具有核壳结构的pSi与碳纳米纤维(CNF)的复合材料(pSi-CNF)。多组分硅中Si、SiO提供电化学可逆容量,SiO2可以抑制硅的体积膨胀;碳纳米纤维包覆形成的壳层结构可以有效提高复合材料的导电性,同时进一步抑制硅的体积膨胀保持核壳结构的完整。通过SEM、TEM、EDS、XRD、Raman和XPS对复合物的微观结构进行分析。结果表明:pSi-CNF的粒径为5~20 µm,碳纳米纤维的直径为5~40 nm, pSi-CNF复合材料中含有Si、SiO和SiO2多种组分硅,有明显特征峰;碳纳米纤维均匀包覆于硅表面,形成核壳结构。电化学性能测试表明,在0.2 A·g−1的电流密度下,经100次循环后其可逆容量为1 411 mAh·g−1,容量保持率为74%,具有良好的循环稳定性和较高的可逆容量;在1 A·g−1的电流密度下,经300次循环后其可逆容量为735 mAh·g−1,容量保持率为86%,且具有良好的倍率性能。
  • FIG. 574.  FIG. 574.

    FIG. 574.. 

    Figure  1.  SEM images of (a) pSi and (b) pSi-CNF, TEM images of (c) pSi-CNF, STEM of (d) pSi-CNF and (e, f) mapping images of different elements.

    Figure  2.  (a) XRD patterns of SiO, pSi, and pSi-CNF , (b) Raman spectrum of pSi-CNF materials, (c) full XPS spectrum of pSi, (d) XPS spectrum and peak-fitted spectra of Si 2p and (e) TGA curves of three pSi-CNF composites.

    Figure  3.  CV curves of (a) pSi and (b) pSi-CNF electrodes at a scan rate of 0.1 mV·s−1.

    Figure  4.  (a, c) Charge and discharge curves of pSi-CNF electrodes at 0.2 A·g−1 and different current densities, (b) cycle performance curves of SiO-CNF, pSi and pSi-CNF at 0.2 A·g−1 and (d) rate performance curves of SiO-CNF, pSi and pSi-CNF.

    Figure  5.  (a) Cycle performance curves, (b)rate performance curves of pSi-CNF anode materials with different carbon amounts and (c) long-cycle performance curves of pSi-CNF and pSi.

    Figure  6.  Nyquist plots of the pSi and pSi-CNF electrodes.

    Figure  7.  SEM images of pSi and pSi-CNF anodes (a, b) before cycle and (c, d) at the 100th cycle.

    Table  1.   Comparison of electrochemical performance between pSi-CNF materials and other silicon-carbon composite anode materials.

    Categories of SiSynthesis methodCycling stability
    Specific capacity (mAh g−1)Cycle numberCurrent/rateRef.
    Micrometer-sized SiSi@SiO2 cluster formation and etching116010000.5 C[27]
    Simple Si/C compositePyrolysis of polymers with Si1200300.1 C[28]
    Yolk-shell Si/CSiO2 and carbon coating150010001 C[29]
    Si/grapheneFreeze-drying8403001.4 A g−1[30]
    Si/CNTGrowth of CNT on substrate and sputtering of Si25001000.2 C[31]
    pSi-CNF (this work)Disproportionation and CVD14111000.2 A g−1
    下载: 导出CSV
  • [1] Shen X H, Tian Z Y, Fan R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry,2018,27(4):1067-1090. doi: 10.1016/j.jechem.2017.12.012
    [2] Li C, Zhang H P, Fu L J, et al. Cathode materials modified by surface coating for lithium ion batteries[J]. Electrochimica Acta,2006,51(19):3872-3883. doi: 10.1016/j.electacta.2005.11.015
    [3] Sun X L, Qin X J, Bu L M, et al. Research progress on carbon anode materials for lithium ion batteries[J]. Nonferrous Metals,2011,63(2):147-151.
    [4] Aurbach D, Zinigrad E, Cohen Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics,2002,148(3-4):405-416. doi: 10.1016/S0167-2738(02)00080-2
    [5] Li Y M, Xu S Y, Wu X Y, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(1):71-77. doi: 10.1039/C4TA05451B
    [6] Ren X X, Xu S D, Liu S B, et al. Lath-shaped biomass derived hard carbon as anode materials with super rate capability for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry,2019,841:63-72. doi: 10.1016/j.jelechem.2019.04.033
    [7] Casimir A, Zhang H G, Ogoke O, et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation[J]. Nano Energy,2016,27:359-376. doi: 10.1016/j.nanoen.2016.07.023
    [8] Kim H, Lee E J, Sun Y K. Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries[J]. Materials Today,2014,17(6):285-297. doi: 10.1016/j.mattod.2014.05.003
    [9] Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology,2014,9(3):187-192. doi: 10.1038/nnano.2014.6
    [10] Park H, Choi S, Lee S J, et al. Design of an ultra-durable silicon-based battery anode material with exceptional high-temperature cycling stability[J]. Nano Energy,2016,26:192-199. doi: 10.1016/j.nanoen.2016.05.030
    [11] Ji L, Zhou W, Chabot V, et al. Reduced graphene oxide/tin-antimony nanocomposites as anode materials for advanced sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(44):24895-24901.
    [12] Zhang J J, Yu A S. Nanostructured transition metal oxides as anode materials for lithium-ion batteries[J]. Science Bulletin,2015,60(9):823-838. doi: 10.1007/s11434-015-0771-6
    [13] Liu Z H, Yu Q, Zhao Y L, et al. Silicon oxides: A promising family of anode materials for lithium-ion batteries[J]. Chemical Society Reviews,2019,48(1):285-309. doi: 10.1039/C8CS00441B
    [14] Qiu D F, Ma X, Zhang J D, et al. Mesoporous silicon microspheres produced from in situ magnesiothermic reduction of silicon oxide for high-performance anode material in sodium-ion batteries[J]. Nanoscale Research Letters,2018,13:275. doi: 10.1186/s11671-018-2699-7
    [15] LIN J L, SU S M, HE Y M, et al. Improving the thermal and mechanical properties of an alumina-filled silicone rubber composite by incorporating carbon nanotubes[J]. New Carbon Materials,2020,35(1):66-72. doi: 10.1016/S1872-5805(20)60476-0
    [16] Al-Salch M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon,2009,47(1):2-22. doi: 10.1016/j.carbon.2008.09.039
    [17] Jang S M, Miyawaki J, Tsuji M, et al. The preparation of a novel Si-CNF composite as an effective anodic material for lithium-ion batteries[J]. Carbon,2009,47(15):3383-3391. doi: 10.1016/j.carbon.2009.07.018
    [18] Zhu X Y. Synthesis of silicon-carbon composite anode materials for lithium ion batteries by chemical vapor deposition[D]. Qingdao University, 2013.
    [19] Liu H P, Qiao W M, Zhan L, et al. In situ growth of a carbon nanofiber/Si composite and its application in Li-ion storage[J]. New Carbon Materials,2009,24(2):124-130. doi: 10.1016/S1872-5805(08)60042-6
    [20] Yamamura H, Nobuhara K, Nakanishi S, et al. Investigation of the irreversible reaction mechanism and the reactive trigger on SiO anode material for lithium-ion battery[J]. Journal of the Ceramic Society of Japan,2011,119(1395):855-860. doi: 10.2109/jcersj2.119.855
    [21] Park C M, Choi W, Hwa Y, et al. Characterization and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry,2010,20(23):4854-4860. doi: 10.1039/b923926j
    [22] Tan T, Lee P K, Yu D Y W, et al. Probing the reversibility of silicon monoxide electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society,2019,166(3):A5210-A5214. doi: 10.1149/2.0321903jes
    [23] Nagao Y, Sakaguchi H, Honda H, et al. Structural analysis of pure and electrochemically lithiated SiO using neutron elastic scattering[J]. Journal of the Electrochemical Society,2004,151(10):A1572-A1575. doi: 10.1149/1.1787173
    [24] Shi Z Q, Guo C Y, Yi W, et al. Catalytic graphitization of MCMB as anode material for lithium ion batteries[J]. Power Source Technology,2009,33(12):1061-1063.
    [25] Li C L, Tang F J, Cui X L, et al. Research progress on the composition and modification of SEI films in lithium ion batteries[J]. Power Source Technology,2016,40(10):2079-2081.
    [26] Yamasaki S, Nishino T, Asada A. Nonaqueous secondary battery with lithium titanium cathode [P]. U.S. Patent 6759168, 2004.
    [27] Jo Y N, Kim Y, Kim J S, et al. Si-graphite composites as anode materials for lithium secondary batteries[J]. Journal of Power Sources,2010,195(18):6031-6036. doi: 10.1016/j.jpowsour.2010.03.008
    [28] Si Q, Hanai K, Imanishi N, et al. Highly reversible carbon-nano-silicon composite anodes for lithium rechargeable batteries[J]. Journal of Power Sources,2009,189(1):761-765. doi: 10.1016/j.jpowsour.2008.08.007
    [29] Liu Y, Wen Z Y, Wang X Y, et al. Electrochemical behaviors of Si/C composite synthesized from F-containing precursors[J]. Journal of Power Sources,2009,189(1):733-737. doi: 10.1016/j.jpowsour.2008.08.016
    [30] Chou S L, Wang J Z, Choucair M, et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite[J]. Electrochemistry Communications,2010,12(2):303-306. doi: 10.1016/j.elecom.2009.12.024
    [31] Abel P R, Chockla A M, Lin Y M, et al. Nanostructured Si1-xGex for tunable thin film lithium-ion battery anodes[J]. ACS Nano,2013,7(3):2249-2257. doi: 10.1021/nn3053632
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  31
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-03-30
  • 网络出版日期:  2021-03-25
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回