The microstructural characteristics of high thermal conductive mesophase pitch-based carbon fibers
-
摘要: 本文研究了高导热(500~1127 W·m−1·K−1)中间相沥青基碳纤维的微观结构特征,初步建立了微观结构特征与导热性能之间的影响关系。通过XRD、拉曼光谱、SEM和TEM对纤维的显微结构进行了系统表征,结果表明,辐射状的纤维结构往往热导率较高,并伴随着劈裂状结构特征。La对导热率的影响比Lc更加显著,纤维截面上的R值可作为评估热导率的重要参照指标。在本研究所涉及的纤维中,石墨微晶尺寸越大,微晶缺陷越少,石墨微晶片层沿纤维轴向取向度越好,则碳纤维的热导率越高。Abstract: The microstructural characteristics of the high thermal conductive (500−1127 W·m−1·K−1) mesophase pitch-based carbon fibers were compared based on characterization by XRD, Raman spectroscopy, SEM and TEM. The relationship between microstructural characteristics and thermal conductivity was obtained. The results show that a radial structure is always accompanied by a split structure and high thermal conductivity. La has a more significant impact on the thermal conductivity than Lc, and ID/IG value on the cross section obtained from Raman spectra can be used as an essential index to evaluate the thermal conductivity of the carbon fibers. The microstructural characteristics including large graphite crystallite size, high preferred orientation degree along the axis direction, and few crystallite defects contribute to the high thermal conductivity of the carbon fibers.
-
Key words:
- Microstructure; /
- Mesophase pitch; /
- Carbon fiber; /
- High thermal conductivity
-
表 1 Properties of the five types mesophase pitch-based carbon fibers.
Table 1. Properties of the five types mesophase pitch-based carbon fibers.
Sample R(Ω) S(μm2) ρ(μΩ·m) λ1(W·m−1·K−1) λ2(W·m−1·K−1) λ3(W·m−1·K−1) λ*(W·m−1·K−1) XN-90 1023.17 73.27 2.95 428.89 383.76 501.27 500 K13C2U 789.00 65.94 2.07 609.87 566.39 651.64 620 K13D2U 423.33 95.42 1.58 799.08 757.30 762.98 800 K1100 362.33 80.47 1.15 1099.42 1058.14 884.86 1100 HNU-3000 192.57 165.78 1.12 1127.00 1088.19 893.27 − λ* manufacturers’ data[24, 25] 表 2 The crystalline parameters and degree of graphitization of carbon fibersbers
Table 2. The crystalline parameters and degree of graphitization of carbon fibersbers
Sample 2θ002(°) d002(nm) Lc(002)(nm) La(100)(nm) g(%)a Z(°) XN-90 26.380 0.3378547 23.07252 38.70151 71.4572 9.33 K13C2U 26.411 0.3374652 26.05127 46.00125 75.9865 9.20 K13D2U 26.426 0.3372770 28.94674 50.61232 78.1743 9.04 K1100 26.468 0.3367513 34.22389 70.30039 84.2867 8.06 HNU-3000 26.479 0.3366139 34.66532 78.25715 85.8843 9.23 a Degree of graphitization (g) was calculated by the equation g=(0.3440-d002)/(0.3440−0.3354) -
[1] Kumar S, Anderson D, Crasto A. Carbon fibre compressive strength and its dependence on structure and morphology[J]. Journal of Materials Science,1993,28(2):423-439. doi: 10.1007/BF00357820 [2] Edie D D. The effect of processing on the structure and properties of carbon fibers[J]. Carbon,1998,36(4):345-362. doi: 10.1016/S0008-6223(97)00185-1 [3] Mochida I, Yoon S H, Takano N, et al. Microstructure of mesophase pitch-based carbon fiber and its control[J]. Carbon,1996,34(8):941-956. doi: 10.1016/0008-6223(95)00172-7 [4] Mochida I, Yoon S-H, Korai Y. Control of transversal texture in circular mesophase pitch-based carbon fibre using non-circular spinning nozzles[J]. Journal of materials science,1993,28(9):2331-2336. doi: 10.1007/BF01151662 [5] Qin X, Lu Y, Xiao H, et al. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers[J]. Carbon,2012,50(12):4459-4469. doi: 10.1016/j.carbon.2012.05.024 [6] Hong S-H, Korai Y, Mochida I. Mesoscopic texture at the skin area of mesophase pitch-based carbon fiber[J]. Carbon,2000,38(6):805-815. doi: 10.1016/S0008-6223(99)00175-X [7] Yao Y, Chen J, Liu L, et al. Mesophase pitch-based carbon fiber spinning through a filter assembly and the microstructure evolution mechanism[J]. Journal of materials science,2014,49(1):191-198. doi: 10.1007/s10853-013-7692-z [8] Matsumoto M, Iwashita T, Arai Y, et al. Effect of spinning conditions on structures of pitch-based carbon fiber[J]. Carbon,1993,31(5):715-720. doi: 10.1016/0008-6223(93)90008-X [9] Wang L, Liu Z, Guo Q, et al. Structure of silicon-modified mesophase pitch-based graphite fibers[J]. Carbon,2015,94:335-341. doi: 10.1016/j.carbon.2015.06.068 [10] Alway-Cooper R M, Anderson D P, Ogale A A. Carbon black modification of mesophase pitch-based carbon fibers[J]. Carbon,2013,59:40-48. doi: 10.1016/j.carbon.2013.02.048 [11] Endo M. Structure of mesophase pitch-based carbon fibres[J]. Journal of Materials Science,1988,23(2):598-605. doi: 10.1007/BF01174692 [12] Huang Y, Young R. Microstructure and mechanical properties of pitch-based carbon fibres[J]. Journal of materials science,1994,29(15):4027-4036. doi: 10.1007/BF00355965 [13] Pennock G M, Taylor G H, Gerald J D F. Microstructure in a series of mesophase pitch-based fibers from du pont: zones, folds, and disclinations[J]. Carbon,1993,31(4):591-609. doi: 10.1016/0008-6223(93)90114-P [14] Patterson A L. The Scherrer Formula for X-Ray Particle Size Determination[J]. Physical Review,1939,56(10):978-982. doi: 10.1103/PhysRev.56.978 [15] Edie D D, Fain C C, Robinson K E, et al. Ribbon-shape carbon fibers for thermal management[J]. Carbon,1993,31(6):941-949. doi: 10.1016/0008-6223(93)90196-H [16] Lu S, Blanco C, Rand B. Large diameter carbon fibres from mesophase pitch[J]. Carbon,2002,40(12):2109-2116. doi: 10.1016/S0008-6223(02)00060-X [17] Edie D D, Robinson K E, Fleurot O, et al. High thermal conductivity ribbon fibers from naphthalene-based mesophase[J]. Carbon,1994,32(6):1045-1054. doi: 10.1016/0008-6223(94)90213-5 [18] Zhang X, Fujiwara S, Fujii M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber[J]. International Journal of Thermophysics,2000,21(4):965-980. doi: 10.1023/A:1006674510648 [19] Yamamoto I. J. P. Patent, 194117 (1998): JP. [20] Lavin J, Boyington D, Lahijani J, et al. The Correlation of Thermal-Conductivity with Electrical-Resistivity in Mesophase Pitch-Based Carbon-Fiber[J]. Carbon,1993,31(6):1001. doi: 10.1016/0008-6223(93)90207-Q [21] He F, Yang Y G. Super thermal conductive mesophase pitch-based carbon fibers[J]. HI-TECH FIBER & APPLICATION,2003,5:27-31. [22] Nika D L, Pokatilov E P, Askerov A S, et al. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering[J]. Physical Review B,2009,79(15 [23] Katagiri G, Ishida H, Ishitani A. Raman spectra of graphite edge planes[J]. Carbon,1988,26(4):565-571. doi: 10.1016/0008-6223(88)90157-1 [24] Minus M, Kumar S. The processing, properties, and structure of carbon fibers[J]. Jom,2005,57(2):52-58. doi: 10.1007/s11837-005-0217-8 [25] Emmerich F G. Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers[J]. Carbon,2014,79:274-293. doi: 10.1016/j.carbon.2014.07.068 -