留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reduced graphene oxide encapsulated MnO microspheres as an anode for high-rate lithium ion capacitors

JIA Yao YANG Zhe-wei LI Hui-jun WANG Yong-zhen WANG Xiao-min

贾耀, 杨哲伟, 李慧君, 王永祯, 王晓敏. 具有高倍率性能的还原氧化石墨烯包覆MnO微球负极用于锂离子电容器. 新型炭材料, 2021, 36(3): 573-584. doi: 10.1016/S1872-5805(21)60037-9
引用本文: 贾耀, 杨哲伟, 李慧君, 王永祯, 王晓敏. 具有高倍率性能的还原氧化石墨烯包覆MnO微球负极用于锂离子电容器. 新型炭材料, 2021, 36(3): 573-584. doi: 10.1016/S1872-5805(21)60037-9
JIA Yao, YANG Zhe-wei, LI Hui-jun, WANG Yong-zhen, WANG Xiao-min. Reduced graphene oxide encapsulated MnO microspheres as an anode for high-rate lithium ion capacitors. New Carbon Mater., 2021, 36(3): 573-584. doi: 10.1016/S1872-5805(21)60037-9
Citation: JIA Yao, YANG Zhe-wei, LI Hui-jun, WANG Yong-zhen, WANG Xiao-min. Reduced graphene oxide encapsulated MnO microspheres as an anode for high-rate lithium ion capacitors. New Carbon Mater., 2021, 36(3): 573-584. doi: 10.1016/S1872-5805(21)60037-9

具有高倍率性能的还原氧化石墨烯包覆MnO微球负极用于锂离子电容器

doi: 10.1016/S1872-5805(21)60037-9
基金项目: 国家自然科学基金(U1710256,U1810204,U1810115)
详细信息
    通讯作者:

    王晓敏, 教授. E-mail:wangxiaomin@tyut.edu.cn

  • 中图分类号: TB33

Reduced graphene oxide encapsulated MnO microspheres as an anode for high-rate lithium ion capacitors

Funds: National Natural Science Foundation of China (U1710256, U1810204, U1810115)
More Information
  • 摘要: 发展一种具有优异脱/嵌锂能力且存在稳定放电平台的负极材料是解决锂离子电容器(LICs)负极动力学性能较差以及提升循环稳定性的关键。本文通过溶剂热和热处理制备了一种还原氧化石墨烯(rGO)包覆MnO微球(~2 μm)的复合材料(MnO/rGO)。电化学测试表明,MnO/rGO材料表现出较好的循环稳定性(在0.1 A g−1的电流密度下循环110圈后比容量为846 mAh g−1)和良好的倍率性能(在6.2 A g−1时比容量为207 mAh g−1)。通过对锂离子存储的动力学行为进行分析,表明赝电容性贡献对容量存储起主要作用。以MnO/rGO为阳极,活性炭(AC)为阴极组装的MnO/rGO//AC LICs,在10350 W kg−1的功率密度下,具有98 Wh kg−1的高能量密度,并且在1.6 A g−1的电流密度下循环5 000圈后容量保持率为71%。
  • FIG. 674.  FIG. 674.

    FIG. 674.. 

    Figure  1.  Schematic illustration of the preparation process for MnO/rGO.

    Figure  2.  (a) SEM image of MnO; (b-f) SEM image, EDS mapping, TEM image and inset (e) SAED pattern and HRTEM image of MnO/rGO.

    Figure  3.  (a) XRD patterns of MnO/rGO and MnO; (b) Raman spectrum of MnO/rGO; (c) Mn 2p and (d) C 1s high-resolution spectra of MnO/rGO.

    Figure  4.  (a) N2 adsorption/desorption isotherms and (b) pore size distribution curves of MnO/rGO and MnO.

    Figure  5.  (a) CV curves at 0.1 mV s−1 and (b) GCD curves of MnO/rGO; (c) Cycling performance and (d) Rate capability of MnO/rGO and MnO; (e) Comparison of rate capability of metal oxides or Mn-based anode materials for LIBs anodes; (f) EIS spectra of MnO/rGO and MnO.

    Figure  6.  MnO/rGO: (a) CV curves at different scan rates; (b) b-values fitting results; (c) the capacitive contribution at 0.6 mV s−1; (d) the proportion of pseudocapacitive and diffusion contributions.

    Figure  7.  Electrochemical performance of MnO/rGO//AC LICs: (a) Schematic illustration of working principle; (b) CV curves at 2 mV s−1; (c) GCD curves at 0.8 A g−1 and (d) Rate capability of LICs; (e) Cyclic performance of LIC-3 at 1.6 A g−1; (f) Ragone plots of LIC-3 and similar LICs reported in literature, inset (f) is the digital photo of the LED lighting application.

  • [1] Ding J, Hu W, Paek E, et al. Review of hybrid ion capacitors: From aqueous to lithium to sodium[J]. Chemical Reviews,2018,118(14):6457-6498. doi: 10.1021/acs.chemrev.8b00116
    [2] Li B, Tian Z, Li H, et al. Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor[J]. Electrochimica Acta,2019,314:32-39. doi: 10.1016/j.electacta.2019.05.040
    [3] Shen C W, Ko T H, Chiu K F, et al. Recycled silicon powder coated on carbon paper used as the anode of lithium ion batteries[J]. New Carbon Materials,2019,34(2):140-145. doi: 10.1016/S1872-5805(19)60007-7
    [4] Wang S, Zhao X, Yan X, et al. Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage[J]. Angewandte Chemie International Edition,2019,58(1):205-210. doi: 10.1002/anie.201811220
    [5] Zhang W, Wang J, Ruan D, et al. Water-based synthesis of spiro-(1,1′)-bipyrrolidinium bis(fluorosulfonyl)imide electrolyte for high-voltage and low-temperature supercapacitor[J]. Chemical Engineering Journal,2019,373:1012-1019. doi: 10.1016/j.cej.2019.05.039
    [6] Zhang J, Liu X, Wang J, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochimica Acta,2016,187:134-142. doi: 10.1016/j.electacta.2015.11.055
    [7] Auxilia F M, Jang J, Jang K, et al. Au@TiO2/reduced graphene oxide nanocomposites for lithium-ion capacitors[J]. Chemical Engineering Journal,2019,362:136-143. doi: 10.1016/j.cej.2019.01.008
    [8] Yang Z, Guo H, Li X, et al. Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors[J]. Journal of Materials Chemistry A,2017,5(29):15302-15309. doi: 10.1039/C7TA03862C
    [9] Wang H, Zhu C, Chao D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials,2017,29(46):1702093-1702115. doi: 10.1002/adma.201702093
    [10] Zhang J, Zhang H, Zhang Y, et al. Unveiling of the energy storage mechanisms of multi -modified (Nb2O5@C)/rGO nanoarrays as anode for high voltage supercapacitors with formulated ionic liquid electrolytes[J]. Electrochimica Acta,2019,313:532-543. doi: 10.1016/j.electacta.2019.04.160
    [11] Chen L, Chen L, Zhai W, et al. Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life[J]. Journal of Power Sources,2019,413:302-309. doi: 10.1016/j.jpowsour.2018.12.026
    [12] Jin L, Gong R, Zhang W, et al. Toward high energy-density and long cycling-lifespan lithium ion capacitors: A 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode[J]. Journal of Materials Chemistry A,2019,7(14):8234-8244. doi: 10.1039/C8TA12000E
    [13] Li C, Zhang X, Wang K, et al. A 29.3 Wh kg−1 and 6 kW kg−1 pouch-type lithium-ion capacitor based on SiOx/graphite composite anode[J]. Journal of Power Sources,2019,414:293-301. doi: 10.1016/j.jpowsour.2018.12.090
    [14] Li G, Yin Z, Guo H, et al. Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced lithium-ion hybrid supercapacitor[J]. Advanced Energy Materials,2019,9(2):1802878-1802886. doi: 10.1002/aenm.201802878
    [15] Qian Y, Jiang S, Li Y, et al. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high‐capacity and long‐life Li/K‐ion batteries[J]. Advanced Energy Materials,2019,9(34):1901676-1901686. doi: 10.1002/aenm.201901676
    [16] Han C, Shi R, Zhou D, et al. High-energy and high-power nonaqueous lithium-ion capacitors based on polypyrrole/carbon nanotube composites as pseudocapacitive cathodes[J]. ACS Applied Materials Interfaces,2019,11(17):15646-15655. doi: 10.1021/acsami.9b02781
    [17] Yang C, Lan J L, Ding C, et al. Three-dimensional hierarchical ternary aerogels of ultrafine TiO2 nanoparticles@porous carbon nanofibers-reduced graphene oxide for high-performance lithium-ion capacitors[J]. Electrochimica Acta,2019,296:790-798. doi: 10.1016/j.electacta.2018.10.037
    [18] Deng B, Lei T, Zhu W, et al. In- plane assembled orthorhombic Nb2O5 oanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors[J]. Advanced Functional Materials,2018,28(1):1704330-1704341. doi: 10.1002/adfm.201704330
    [19] Zhao Y, Cui Y, Shi J, et al. Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors[J]. Journal of Materials Chemistry A,2017,5(29):15243-15252. doi: 10.1039/C7TA04154C
    [20] Zheng F, Yin Z, Xia H, et al. Porous MnO@C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries[J]. Chemical Engineering Journal,2017,327:474-480. doi: 10.1016/j.cej.2017.06.097
    [21] Liu C, Fu H, Pei Y, et al. Understanding the electrochemical potential and diffusivity of MnO/C nanocomposites at various charge/discharge states[J]. Journal of Materials Chemistry A,2019,7(13):7831-7842. doi: 10.1039/C9TA00056A
    [22] Guo J, Liang J, Cui C, et al. Oleic acid-treated synthesis of MnO@C with superior electrochemical properties[J]. Journal of Energy Chemistry,2017,26(3):340-345. doi: 10.1016/j.jechem.2017.03.003
    [23] Yang Y, Wang H, Liu W, et al. Polymer salt-derived carbon-based nanomaterials for high-performance hybrid Li-ion capacitors[J]. Journal of Materials Science,2019,54(10):7811-7822. doi: 10.1007/s10853-019-03423-w
    [24] Yang H, Zhang C, Meng Q, et al. Pre-lithiated manganous oxide/graphene aerogel composites as anode materials for high energy density lithium ion capacitors[J]. Journal of Power Sources,2019,431:114-124. doi: 10.1016/j.jpowsour.2019.05.060
    [25] Sheng L, Jiang H, Liu S, et al. Nitrogen-doped carbon-coated MnO nanoparticles anchored on interconnected graphene ribbons for high-performance lithium-ion batteries[J]. Journal of Power Sources,2018,397:325-333. doi: 10.1016/j.jpowsour.2018.07.021
    [26] Wang F, Li C, Zhong J, Yang Z. A flexible core-shell carbon layer MnO nanofiber thin film via host-guest interaction: construction, characterization, and electrochemical performances[J]. Carbon,2018,128:277-286. doi: 10.1016/j.carbon.2017.11.075
    [27] Leng J, Wang Z, Wang J, et al. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion[J]. Chemical Society Reviews,2019,48(11):3015-3072. doi: 10.1039/C8CS00904J
    [28] Xiao Z, Ning G, Yu Z, et al. MnO@graphene nanopeapods derived via a one-pot hydrothermal process for a high performance anode in Li-ion batteries[J]. Nanoscale,2019,11(17):8270-8280. doi: 10.1039/C8NR10294E
    [29] Wang Y, Wu H, Liu Z, et al. Tailoring sandwich-like CNT@MnO@N-doped carbon hetero-nanotubes as advanced anodes for boosting lithium storage[J]. Electrochimica Acta,2019,304:158-167. doi: 10.1016/j.electacta.2019.03.002
    [30] Pei X, Mo D, Lyu S, et al. Facile preparation of N-doped MnO/rGO composite as an anode material for high-performance lithium-ion batteries[J]. Applied Surface Science,2019,465:470-477. doi: 10.1016/j.apsusc.2018.09.151
    [31] Zhang F, Wang Y, Guo W, et al. Synthesis of Sn-MnO@nitrogen-doped carbon yolk-shelled three-dimensional interconnected networks as a high-performance anode material for lithium-ion batteries[J]. Chemical Engineering Journal,2019,360:1509-1516. doi: 10.1016/j.cej.2018.11.004
    [32] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3(2):101-105. doi: 10.1038/nnano.2007.451
    [33] Wei Y, Zi Z, Chen B, et al. Facile synthesis of hollow MnO microcubes as superior anode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds,2018,756:93-102. doi: 10.1016/j.jallcom.2018.04.331
    [34] Zhao J, Tang M, Cao J, et al. Structurally tunable reduced graphene oxide substrate maintains mouse embryonic stem cell pluripotency[J]. Advanced Science,2019,6(12):1802136-1802150. doi: 10.1002/advs.201802136
    [35] Xu Q, Xue H, Guo S. FeS2 walnut-like microspheres wrapped with rGO as anode material for high-capacity and long-cycle lithium-ion batteries[J]. Electrochimica Acta,2018,292:1-9. doi: 10.1016/j.electacta.2018.09.135
    [36] Zhu G, Wang L, Lin H, et al. Walnut-like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries[J]. Advanced Functional Materials,2018,28(18):1800003-1800010. doi: 10.1002/adfm.201800003
    [37] Zhang Y, Chen P, Gao X, et al. Nitrogen- doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage[J]. Advanced Functional Materials,2016,26(43):7754-7765. doi: 10.1002/adfm.201603716
    [38] Liu D, Liu D, Hou B, et al. 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries[J]. Electrochimica Acta,2018,264:292-300. doi: 10.1016/j.electacta.2018.01.129
    [39] Hou C, Tai Z, Zhao L, et al. High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage[J]. Journal of Materials Chemistry A,2018,6(20):9723-9736. doi: 10.1039/C8TA02863J
    [40] Liu R, Chen X, Zhou C, et al. Controlled synthesis of porous 3D interconnected MnO/C composite aerogel and their excellent lithium-storage properties[J]. Electrochimica Acta,2019,306:143-150. doi: 10.1016/j.electacta.2019.03.129
    [41] Zhang X, Zhang J, Kong S, et al. A novel calendula-like MnNb2O6 anchored on graphene sheet as high-performance intercalation pseudocapacitive anode for lithium-ion capacitors[J]. Journal of Materials Chemistry A,2019,7(6):2855-2863. doi: 10.1039/C8TA10233C
    [42] Liu C, Zhang C, Fu H, et al. Exploiting high-performance anode through tuning the character of chemical bonds for Li-ion batteries and capacitors[J]. Advanced Energy Materials,2017,7(1):1601127-1601136. doi: 10.1002/aenm.201601127
    [43] Huang H, Shi C, Fang R, et al. Bio-templated fabrication of MnO nanoparticles in SiOC matrix with lithium storage properties[J]. Chemical Engineering Journal,2019,359:584-593. doi: 10.1016/j.cej.2018.11.166
    [44] Chu Y, Guo L, Xi B, et al. Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage[J]. Advanced Materials,2018,30(6):1704244-1704256. doi: 10.1002/adma.201704244
    [45] Zhang S, Li C, Zhang X, et al. High Performance performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode[J]. ACS Applied Materials Interfaces,2017,9(20):17136-17144. doi: 10.1021/acsami.7b03452
    [46] Zhang W, Li J, Zhang J, et al. Top- down strategy to synthesize mesoporous dual carbon armored MnO nanoparticles for lithium-ion battery anodes[J]. ACS Applied Materials Interfaces,2017,9(14):12680-12686. doi: 10.1021/acsami.6b16576
    [47] Wang J, Liu H, Liu H, et al. Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries[J]. Chemical Engineering Journal,2017,328:591-598. doi: 10.1016/j.cej.2017.07.039
    [48] Tian Z, Wang X, Li B, et al. High rate capability electrode constructed by anchoring CuCo2S4 on graphene aerogel skeleton toward quasi-solid-state supercapacitor[J]. Electrochimica Acta,2019,298:321-329. doi: 10.1016/j.electacta.2018.12.103
    [49] Zhang J, Lv W, Zheng D, et al. The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors[J]. Advanced Energy Materials,2018,8(11):1702395-1702402. doi: 10.1002/aenm.201702395
    [50] Li H, Hao S, Tian Z, et al. Flexible self-supporting Ni2P@N-doped carbon anode for superior rate and durable sodium-ion storage[J]. Electrochimica Acta,2019,321:134624-134635. doi: 10.1016/j.electacta.2019.134624
    [51] Hu Z, Sayed S, Jiang T, et al. Self- assembled binary organic granules with multiple lithium uptake mechanisms toward high-energy flexible lithium-lon hybrid supercapacitors[J]. Advanced Energy Materials,2018,8(30):1802273-1802285. doi: 10.1002/aenm.201802273
    [52] Huang H, Wang X, Tervoort E, et al. Nano- sized structurally disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors[J]. ACS Nano,2018,12(3):2753-2763. doi: 10.1021/acsnano.7b09062
    [53] Liu C, Ren Q, Zhang S, et al. High energy and power lithium-ion capacitors based on Mn3O4/3D-graphene as anode and activated polyaniline-derived carbon nanorods as cathode[J]. Chemical Engineering Journal,2019,370:1485-1492. doi: 10.1016/j.cej.2019.04.044
    [54] Fleischmann S, Zeiger M, Quade A, et al. Atomic layer-deposited molybdenum oxide/carbon nanotube hybrid electrodes: the influence of crystal ctructure on lithium-ion capacitor performance[J]. ACS Applied Materials Interfaces,2018,10(22):18675-18684. doi: 10.1021/acsami.8b03233
    [55] Arnaiz M, Botas C, Carriazo D, et al. Reduced graphene oxide decorated with SnO2 nanoparticles as negative electrode for lithium ion capacitors[J]. Electrochimica Acta,2018,284:542-550. doi: 10.1016/j.electacta.2018.07.189
  • 20200035-SI.pdf
  • 加载中
图(8)
计量
  • 文章访问数:  1113
  • HTML全文浏览量:  475
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 修回日期:  2020-03-31
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回