留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon materials for solar-powered seawater desalination

WANG Tian-yi HUANG Heng-bo LI Hao-liang SUN You-kun XUE Yu-hua XIAO Shu-ning YANG Jun-he

王天逸, 黄恒波, 李昊亮, 孙友坤, 薛裕华, 肖舒宁, 杨俊和. 碳基功能材料在太阳能海水淡化中的研究进展[J]. 新型炭材料, 2021, 36(4): 683-701. doi: 10.1016/S1872-5805(21)60066-5
引用本文: 王天逸, 黄恒波, 李昊亮, 孙友坤, 薛裕华, 肖舒宁, 杨俊和. 碳基功能材料在太阳能海水淡化中的研究进展[J]. 新型炭材料, 2021, 36(4): 683-701. doi: 10.1016/S1872-5805(21)60066-5
WANG Tian-yi, HUANG Heng-bo, LI Hao-liang, SUN You-kun, XUE Yu-hua, XIAO Shu-ning, YANG Jun-he. Carbon materials for solar-powered seawater desalination[J]. NEW CARBON MATERIALS, 2021, 36(4): 683-701. doi: 10.1016/S1872-5805(21)60066-5
Citation: WANG Tian-yi, HUANG Heng-bo, LI Hao-liang, SUN You-kun, XUE Yu-hua, XIAO Shu-ning, YANG Jun-he. Carbon materials for solar-powered seawater desalination[J]. NEW CARBON MATERIALS, 2021, 36(4): 683-701. doi: 10.1016/S1872-5805(21)60066-5

碳基功能材料在太阳能海水淡化中的研究进展

doi: 10.1016/S1872-5805(21)60066-5
基金项目: 上海市教委(2019-01-07-00-E00015),上海市科技创新工程(19JC1410402),上海市科委(20060502200),上海高校特聘教授(东方学者)项目. 航海和上海帆船项目(20YF1432200,20YF1432100)
详细信息
    通讯作者:

    肖舒宁,教授. E-mail:xiaosn@usst.edu.cn

    杨俊和,教授. E-mail:jhyang@usst.edu.cn

  • 中图分类号: TQ127.1+1

Carbon materials for solar-powered seawater desalination

Funds: This work was supported by the Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-E00015), Shanghai Scientific and Technological Innovation Project (19JC1410402), Science and Technology Commission of Shanghai Municipality (20060502200), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and Shanghai Sailing Program (20YF1432200, 20YF1432100)
More Information
  • 摘要: 碳基材料在太阳能海水淡化(SSD)领域,因其具有优秀的光吸收能力、较高的光热转换效率、水传输的平衡和耐盐性,受到了人们的广泛关注,是未来获取淡水资源的重要途径之一。在这篇小型综述中,笔者对碳基材料在SSD中的最新研究进行了分类和讨论,分析了碳基材料的光热转换机制,总结了目前SSD材料的发展现状,并讨论了水管理在碳基材料SSD中的重要作用。最后,展望了碳基材料在SSD应用中的关键问题与挑战,为进一步改进碳基材料实现高效SSD提供了理论参考。
  • FIG. 778.  FIG. 778.

    FIG. 778.. 

    1.  Principles of the solar-powered seawater desalination.

    Figure  1.  (a) Schematic diagram of the photothermal seawater desalination principle, (b) UV, visible and infrared as a percentage of solar spectrum illuminance (AM 1.5)[1516] (Copyright 2019, Elsevier Ltd. All rights reserved), (c) optical absorption bandwidth of commonly used nanoparticles for SSD[17] (Copyright 2020, American Chemical Society), (d-f) schematic diagram of the photothermal mechanism of (d) plasma heating, (e) generation and relaxation of electron-hole, and (f) molecular thermal vibrations[29] (Copyright 2018, Elsevier).

    Figure  2.  Schematic diagram of the development of SSD: (a) Bottom heating mode, (b) suspension heating mode, (c) interfacial heating mode, (d) schematic diagram of the balance of solar radiation, mass transport and heat loss during evaporation from SSD[30] (Copyright 2020, Royal Society of Chemistry).

    Figure  3.  (a) Schematic diagram of the oxygen plasma treatment of MWCNT[45] (Copyright 2020, Royal Society of Chemistry), (b) physical view of the solar evaporation unit floating on the thermal insulation[48] (Copyright 2017, American Chemical Society), (c) schematic diagram of the temperature distribution of GA during SSD, (d) photo and SEM image of GA, (e) schematic diagram of the GA preparation process[49] (Copyright 2017, American Chemical Society) and (f) schematic diagram of the GO-SA-CNT preparation process[50] (Copyright 2016, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim).

    Figure  4.  (a) Design of plasmonic wood[71] (Copyright 2017, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim), (b) comparative study of water mass loss and temperature evolution with and without graphene-AgNP composite in a water bath as a function of time for 80 mL of water[72] (Copyright 2016, Elsevier), (c-f) SEM images of MPM substrates coated with different thicknesses of In NPs, (g-h) absorption spectra of different MPM substrates in the visible and infrared regions and (i) optical images of MPM substrates coated with In NPs of different thicknesses[73] (Copyright 2017, Royal Society of Chemistry).

    Figure  5.  (a) TEM, (b) its high resolution images of MoO3-x-BiOCl-CNTs, (c) FT-IR spectra acquired on MoO3-x (I), CNTs (II), BiOCl (III), and MoO3-x-BiOCl-CNTs without (IV) and with (V) hydrophobic treatment[77] (Copyright 2020 Elsevier B.V. All rights reserved), (d) excellent optical absorption and (e) thermal insulation of MoCC-CH[84] (Copyright 2020, American. Chemical Society), (f) evaporative mass loss curves and (g) surface temperature tracking curves with time for water, CF and BSSG under different conditions[85] (Copyright 2020, American Chemical Society).

    Figure  6.  SEM images of the internal pores of poplar and pine (a-b) before and (c-d) after carbonization[88](Copyright 2017, Elsevier), (e) schematic diagram of the process for preparing photothermal materials for SSD based on corn stover “foam”[90] (Reproduced with permission from. Copyright 2020, American Chemical Society), (f) assembly of a bamboo-based photothermal materials for SSD[99] (Copyright 2020, Elsevier), (g) process flow diagram for the preparation of a porous photothermal material based on grapefruit peel that can be used for (h) solar water evaporation as well as (i) oil cleanup[100] (Copyright 2020, American Chemical Society), (j) a SSD device based on mushroom, the cross-sectional view of a mushroom: (k) before and (l) after carbonization[101] (Copyright 2017, Wiley-VCH).

    Figure  7.  (a) Cross-section schematic of LFSTM and partial enlarged details[107] (Copyright 2020, American Chemical Society), (b) a banyan tree diagram, (c) SEM image of abundant water transport in aspen roots, (d) diagram of multi-surface evaporation from a tree leaf, (e) schematic diagram of evaporation of photothermal material simulating the principle of evaporation from banyan trees[108] (Copyright 2020, Elsevier), (f) principles of water evaporation and salt resistance in three-dimensional bird's beak solar thermal materials[113] (Copyright 2020, the Nature publishing group) and (g) a three-dimensional fold-paper solar steam generator[114] (Copyright 2018, American Chemical Society).

    Table  1.   Performance of different carbon materials in solar-powered seawater desalination.

    Carbon materials Solar intensity
    (kW m−2)
    Solar intensity
    (kW m−2)
    Photothermal conversion
    efficiency
    Water
    management
    Evaporation rate
    (kg m−2 h−1)
    Salt resistance Refs.
    MWCNTs 1.00 1.00 92.4% WI 1.72 good [45]
    RGO-SA-CNT 1.00 1.00 87.5% W 1.37 good [51]
    VACNT 15.00 15.00 90.0% W 5.50 good [92]
    Modified graphene aerogel 1.00 1.00 76.9% W 1.23 good [70]
    MoS2-rGO 1.00 1.00 86.7% WI 1.24 good [102]
    VA-GSM 1.00 1.00 86.5% W 1.62 good [103]
    MoCC-CH 1.00 1.00 96.2% W 2.19 good [84]
    Plasmonic bamboo 10.00 10.00 87.0% W 12.80 poor [99]
    Plasmonic wood 10.00 10.00 85.0% W 11.80 good [71]
    RGO-SA-cellulose 1.00 1.00 88.9% WI 2.25 poor [52]
    Note: WI: materials with water transport and insulation, W: materials with water transport but without insulation.
    下载: 导出CSV
  • [1] Eliasson J. The rising pressure of global water shortages[J]. Nature,2015,517:6-7. doi: 10.1038/517006a
    [2] Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature,2008,452:301-310. doi: 10.1038/nature06599
    [3] Chen W, Chen S Y, Liang T F, et al. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes[J]. Nature Nanotechnology,2018,13(4):345-350. doi: 10.1038/s41565-018-0067-5
    [4] Divincenzo M, Tiraferri A, Musteata V E, et al. Biomimetic artificial water channel membranes for enhanced desalination[J]. Nature Nanotechnology,2021,16(2):190-196. doi: 10.1038/s41565-020-00796-x
    [5] Yang P, Liu K, Chen Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science,2017,10(9):1923-1927.
    [6] Mauter M S and Fiske P S. Desalination for a circular water economy[J]. Energy & Environmental Science,2020,13(10):3180-3184.
    [7] Lin S S, Zhao H Y, Zhu L P, et al. Seawater desalination technology and engineering in China: a review[J]. Desalination,2021,498:114728. doi: 10.1016/j.desal.2020.114728
    [8] Doornbusch G, Wal M V D, Tedesco M, et al. Multistage electrodialysis for desalination of natural seawater[J]. Desalination,2021,505:114973. doi: 10.1016/j.desal.2021.114973
    [9] Amy G, Ghaffour N, Li Z Y, et al. Membrane-based seawater desalination: present and future prospects[J]. Desalination,2017,401:16-21. doi: 10.1016/j.desal.2016.10.002
    [10] Politano A, Argurio P, Profio G D, et al. Photothermal membrane distillation for seawater desalination[J]. Advanced Materials,2017,29(2)-1603504.
    [11] Ni G, Miljkovic N, Ghasemi H, et al. Volumetric solar heating of nanofluids for direct vapor generation[J]. Nano Energy,2015,17:290-301. doi: 10.1016/j.nanoen.2015.08.021
    [12] Shang M Y, Li N, Zhang S D, et al. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater[J]. ACS Applied Energy Materials,2017,1:56-61.
    [13] Dao V D, Vu N H , Yun S. Recent advances and challenges for solar-driven water evaporation system toward applications[J]. Nano Energy,2020,68:104324. doi: 10.1016/j.nanoen.2019.104324
    [14] Badenhorst H. A review of the application of carbon materials in solar thermal energy storage[J]. Solar Energy,2019,192:35-68. doi: 10.1016/j.solener.2018.01.062
    [15] Cao S S, Jiang Q S, Wu X H, et al. Advances in solar evaporator materials for freshwater generation[J]. Journal of Materials Chemistry A,2019,7(42):24092-24123. doi: 10.1039/C9TA06034K
    [16] Gao M M, Zhu L L, Peh C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science,2019,12(3):841-864.
    [17] Pang Y S, Zhang J J, Ma R M, et al. Solar–thermal water evaporation: A review[J]. ACS Energy Letters,2020,5(2):437-456. doi: 10.1021/acsenergylett.9b02611
    [18] Dao V D and Choi H S. Carbon-based sunlight absorbers in solar-driven steam generation devices[J]. Global Challenges,2018,2(2):1700094. doi: 10.1002/gch2.201700094
    [19] Chen G Y, Sun J M, Peng Q, et al. Biradical-featured stable organic-small-molecule photothermal materials for highly efficient solar-driven water evaporation[J]. Advanced Materials,2020,32(29):e1908537. doi: 10.1002/adma.201908537
    [20] Liu C X, Huang J F, Hsiung C E, et al. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles[J]. Advanced Sustainable Systems,2017,1:1600013. doi: 10.1002/adsu.201600013
    [21] Awad F S, Kiriarachchi H D, Abouzeid K M, et al. Photothermal membrane distillation for seawater desalination[J]. ACS Applied Energy Materials,2018,1(3):976-985. doi: 10.1021/acsaem.8b00109
    [22] Ontiveros M A, Quintero Y, Llanquilef A, et al. Anti-biofouling and desalination properties of thin film composite reverse osmosis membranes modified with copper and iron nanoparticles[J]. Materials (Basel),2019,12(13):2081. doi: 10.3390/ma12132081
    [23] Elsayed E, Dadah R A, Mahmoud S, et al. Experimental testing of aluminium fumarate MOF for adsorption desalination[J]. Desalination,2020,475:114170. doi: 10.1016/j.desal.2019.114170
    [24] Wang M M, Wang P, Zhang J, et al. A ternary Pt/Au/TiO2 -decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline[J]. Chemistry-Sustainability-Energy-Materials,2019,12(2):467-472.
    [25] Yang X D, Yang Y B, Fu L N, et al . An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials,2018,28(3):1704505. doi: 10.1002/adfm.201704505
    [26] Zhu G L, Xu J J, Zhao W L, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces,2016,8(46):31716-31721. doi: 10.1021/acsami.6b11466
    [27] Huang W, Su P W, Cao Y, et al. Three-dimensional hierarchical CuxS-based evaporator for high-efficiency multifunctional solar distillation[J]. Nano Energy,2020,69:104465. doi: 10.1016/j.nanoen.2020.104465
    [28] Chen R, Wu Z J, Zhang T Q, et al. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating[J]. RSC Advances,2017,7(32):19849-19855. doi: 10.1039/C7RA03007J
    [29] Chen C J, Kuang Y D, Hu L B. Challenges and opportunities for solar evaporation[J]. Joule,2019,3(3):683-718. doi: 10.1016/j.joule.2018.12.023
    [30] Liu X H, Mishra D D, Wang X B, et al. Towards highly efficient solar-driven interfacial evaporation for desalination[J]. Journal of Materials Chemistry A,2020,8(35):17907-17937. doi: 10.1039/C9TA12612K
    [31] Xu Z R, Li Z D, Jiang Y H, et al. Recent advances in solar-driven evaporation systems[J]. Journal of Materials Chemistry A,2020,8(48):25571-25600. doi: 10.1039/D0TA08869B
    [32] Zhang Y X, Xiong T, Nandakumar D K, et al. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation[J]. Advanced Science,2020,7(9):1903478. doi: 10.1002/advs.201903478
    [33] Chen C J, Li Y J, Song J W, et al. Recent advances in solar-driven evaporation systems[J]. Advanced Materials,2017,29(30):1701756. doi: 10.1002/adma.201701756
    [34] Zhao F, Guo Y H, Zhou X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials,2020,5(5):388-401. doi: 10.1038/s41578-020-0182-4
    [35] Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy,2018,3(12):1031-1041. doi: 10.1038/s41560-018-0260-7
    [36] Mao H N and Wang X G. Use of in-situ polymerization in the preparation of graphene / polymer nanocomposites[J]. New Carbon Materials,2020,35(4):336-343. doi: 10.1016/S1872-5805(20)60493-0
    [37] Liu M J, Wei F, Yang X M, et al. Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template[J]. New Carbon Materials,2018,33(4):316-323. doi: 10.1016/S1872-5805(18)60342-7
    [38] Guo M X, Wu J B, Li F H, et al. A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New Carbon Materials,2020,35(4):436-443. doi: 10.1016/S1872-5805(20)60501-7
    [39] Wang X Z, He Y R, Liu X. Synchronous steam generation and photodegradation for clean water generation based on localized solar energy harvesting[J]. Energy Conversion and Management,2018,173:158-166. doi: 10.1016/j.enconman.2018.07.065
    [40] Gao X, Ren H Y, Zhou J Y, et al. Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation[J]. Chemistry of Materials,2017,29(14):5777-5781. doi: 10.1021/acs.chemmater.7b01838
    [41] Inagaki M. Pores in carbon materials-importance of their control[J]. New Carbon Materials,2009,24(3):193-232. doi: 10.1016/S1872-5805(08)60048-7
    [42] Jiang F, Liu H, Li Y J, et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation[J]. ACS Applied Materials & Interfaces,2018,10(1):1104-1112.
    [43] Li K, Gao M M, Li Z P, et al. Multi-interface engineering of solar evaporation devices via scalable, synchronous thermal shrinkage and foaming[J]. Nano Energy,2020,74:104875. doi: 10.1016/j.nanoen.2020.104875
    [44] Zhu L L, Gao M M, Peh C K N, et al. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation[J]. Advanced Energy Materials,2018,8(16)-1702149.
    [45] Hu T, Li L X, Yang Y F, et al. A yolk@shell superhydrophobic/superhydrophilic solar evaporator for efficient and stable desalination[J]. Journal of Materials Chemistry A,2020,8(29):14736-14745. doi: 10.1039/D0TA04917D
    [46] Wang Y C, Zhang L B , Wang P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation[J]. ACS Sustainable Chemistry & Engineering,2016,4(3):1223-1230.
    [47] Lee J, Kim K, Park S H, et al. Macroporous photothermal bilayer evaporator for highly efficient and self-cleaning solar desalination[J]. Nano Energy,2020,77:105131. doi: 10.1016/j.nanoen.2020.105131
    [48] Yang J L, Pang Y S, Huang W X, et al. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano,2017,11(6):5510-5518. doi: 10.1021/acsnano.7b00367
    [49] Fu Y, Wang G, Mei T, et al. Accessible graphene aerogel for efficiently harvesting solar energy[J]. ACS Sustainable Chemistry & Engineering,2017,5(6):4665-4671.
    [50] Hu X Z, Xu W C, Zhou L, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Advanced Materials,2017,29(5):1604031.
    [51] Wang H Q, Du A, Ji X J, et al. Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation[J]. ACS Applied Materials & Interfaces,2019,11(45):42057-42065.
    [52] Storer D P, Phelps J L, Wu X, et al. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation[J]. ACS Applied Materials & Interfaces,2020,12(13):15279-15287.
    [53] Lou J W, Liu Y, Wang Z Y, et al. Bioinspired multifunctional paper-based rgo composites for solar-driven clean water generation[J]. ACS Applied Materials & Interfaces,2016,8:14628-14636.
    [54] Jiang Q S, Tian L M, Liu K K, et al. Bilayered biofoam for highly efficient solar steam generation[J]. Advanced Materials,2016,28:9400-9407. doi: 10.1002/adma.201601819
    [55] Shi L, Wang Y C, Zhang L B, et al. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A,2017,5:16212-16219. doi: 10.1039/C6TA09810J
    [56] Li X Q, Xu W C, Tang M Y, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113:13953-13958. doi: 10.1073/pnas.1613031113
    [57] Liu Z J, Song H M, Ji D X, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper[J]. Global Challenge,2017,1:1600003. doi: 10.1002/gch2.201600003
    [58] Wang Z Z, Ye Q X, Liang X B, et al. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun[J]. Journal of Materials Chemistry A,2017,5:16359-16368. doi: 10.1039/C7TA03262E
    [59] Girel K V, Panarin A Y, Bandarenka H V, et al. Plasmonic silvered nanostructures on macroporous silicon decorated with graphene oxide for SERS-spectroscopy[J]. Nanotechnology,2018,29(39):395708. doi: 10.1088/1361-6528/aad250
    [60] Wang Y C, Wang C Z, Song X J, et al. A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation[J]. Journal of Materials Chemistry A,2018,6:963-971. doi: 10.1039/C7TA08972D
    [61] Tadepalli S, Yim J, Cao S S, et al. Metal-organic framework encapsulation for the preservation and photothermal enhancement of enzyme activity[J]. Small,2018,14(7):1702382. doi: 10.1002/smll.201702382
    [62] Zhou L, Tan Y L, Ji D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances,2016,2(4):1.
    [63] Wang X Z, He Y R, Liu X, et al. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes[J]. Applied Energy,2017,195:414-425. doi: 10.1016/j.apenergy.2017.03.080
    [64] Zhou L, Tan Y L, Wang J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics,2016,10:393-398. doi: 10.1038/nphoton.2016.75
    [65] Chen M J, He Y R, Huang J, et al. Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles[J]. Energy Conversion and Management,2016,127:293-300. doi: 10.1016/j.enconman.2016.09.015
    [66] Sun W, Zhong G, Kubel C, et al. Size-tunable photothermal germanium nanocrystals[J]. Angewandte Chemie International Edition,2017,56(22):6329-6334. doi: 10.1002/anie.201701321
    [67] Li L, Wang C P, Huang Q, et al. A degradable hydrogel formed by dendrimer-encapsulated platinum nanoparticles and oxidized dextran for repeated photothermal cancer therapy[J]. Journal of Materials Chemistry B,2018,6(16):2474-2480. doi: 10.1039/C8TB00091C
    [68] Pala R A, Liu J S Q, Barnard E S, et al. Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells[J]. Nature Communications,2013,4:2095. doi: 10.1038/ncomms3095
    [69] Chen J X, Li B, Hu G X, et al. Integrated evaporator for efficient solar-driven interfacial steam generation[J]. Nano Letters,2020,20(8):6051-6058. doi: 10.1021/acs.nanolett.0c01999
    [70] Fu Y, Wang G, Ming X, et al. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation[J]. Carbon,2018,130:250-256. doi: 10.1016/j.carbon.2017.12.124
    [71] Zhu M W, Li Y J, Chen F J, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials,2018,8(4)-1701028.
    [72] Sharma B and Rabinal M K. Plasmon based metal-graphene nanocomposites for effective solar vaporization[J]. Journal of Alloys and Compounds,2017,690:57-62. doi: 10.1016/j.jallcom.2016.07.330
    [73] Zhang L L, Xing J, Wen X L, et al. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination[J]. Nanoscale,2017,9(35):12843-12849. doi: 10.1039/C7NR05149B
    [74] Huang X H, Jain P K, Elsayed I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles[J]. Lasers in Medical Science,2008,23(3):217-228. doi: 10.1007/s10103-007-0470-x
    [75] Jiang Q S, Chandar Y J, Cao S S, et al. Rapid, point-of-care, paper-based plasmonic biosensor for zika virus diagnosis[J]. Advanced Biosystems,2017,1(9):e1700096. doi: 10.1002/adbi.201700096
    [76] Wang J, Li Y Y, Deng L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2017,29(3):1603730. doi: 10.1002/adma.201603730
    [77] Gao Z, Yang H P, LI J W, et al. Simultaneous evaporation and decontamination of water on a novel membrane under simulated solar light irradiation[J]. Applied Catalysis B: Environmental,2020,267(1):118695.
    [78] Xu Y, Ma J X, Han Y, et al. Multifunctional CuO nanowire mesh for highly efficient solar evaporation and water purification[J]. ACS Sustainable Chemistry & Engineering,2019,7(5):5476-5485.
    [79] Guo A K, Ming X, Fu Y, et al. Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation[J]. ACS Applied Materials & Interfaces,2017,9(35):29958-29964. doi: 10.1021/acsami.7b07759
    [80] Wang X Q, Ou G, Wang N, et al. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination[J]. ACS Applied Materials Interfaces,2016,8(14):9194-9199. doi: 10.1021/acsami.6b02071
    [81] Zeng Y, Yao J F, Horri B A, et al. Solar evaporation enhancement using floating light-absorbing magnetic particles[J]. Energy & Environmental Science,2011,4(10):4074-4078.
    [82] Yang X D, Yang Y B, Fu L N, et al. An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials,2018,28(3)-1704505.
    [83] Liu F H, Zhao B Y, Wu W P, et al. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation[J]. Advanced Functional Materials,2018,28(47)-1803266.
    [84] Yu F, Chen Z H, Guo Z Z, et al. Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator[J]. ACS Sustainable Chemistry & Engineering,2020,8(18):7139-7149.
    [85] Tahir Z S, Kim S D, Ullah F, et al. Highly efficient solar steam generation by glassy carbon foam coated with two-dimensional metal chalcogenides[J]. ACS Applied Materials & Interfaces,2020,12(2):2490-2496. doi: 10.1021/acsami.9b18589
    [86] Younis S A, Elsalamony R A, Tsang Y F, et al. Use of rice straw-based biochar for batch sorption of barium/strontium from saline water: protection against scale formation in petroleum/desalination industries[J]. Journal of Cleaner Production,2020,250:119442. doi: 10.1016/j.jclepro.2019.119442
    [87] Geng Y, Sun W, Ying P J, et al. Bioinspired fractal design of waste biomass‐derived solar–thermal materials for highly efficient solar evaporation[J]. Advanced Functional Materials,2020,31(3)-2007648.
    [88] Jia C, Li Y J, Yang Z, et al. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule,2017,1(3):588-599. doi: 10.1016/j.joule.2017.09.011
    [89] Liao Y L, Chen J H, Zhang D N, et al. Lotus leaf as solar water evaporation devices[J]. Materials Letters,2019,240:92-95. doi: 10.1016/j.matlet.2018.12.133
    [90] Li J Y, Zhou X, Mu P, et al. Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators[J]. ACS Applied Materials Interfaces,2020,12:798-806. doi: 10.1021/acsami.9b18398
    [91] Wu Q, Sundborg H, Andersson R, et al. Conductive biofoams of wheat gluten containing carbon nanotubes, carbon black or reduced graphene oxide[J]. RSC Advances,2017,7(30):18260-18269. doi: 10.1039/C7RA01082F
    [92] Yin Z, Wang H M, Jian M Q, et al. Extremely black vertically aligned carbon nanotube arrays for solar steam generation[J]. ACS Applied Materials Interfaces,2017,9(34):28596-28603. doi: 10.1021/acsami.7b08619
    [93] Liu K K, Jiang Q S, Tadepalli S, et al. Wood-graphene oxide composite for highly efficient solar steam generation and desalination[J]. ACS Applied Materials Interfaces,2017,9(8):7675-7681. doi: 10.1021/acsami.7b01307
    [94] Fang J, Liu J, Gu J J, et al. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation[J]. Chemistry of Materials,2018,30(18):6217-6221. doi: 10.1021/acs.chemmater.8b01702
    [95] Ren H Y, Tang M, Guan B L, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials[J]. Advanced Materials,2017,29(38):1702590. doi: 10.1002/adma.201702590
    [96] Xue G B, Liu K, Chen Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Applied Materials Interfaces,2017,9(17):15052-15057. doi: 10.1021/acsami.7b01992
    [97] Kuang Y D, Chen C J, He S M, et al. A high-performance self-regenerating solar evaporator for continuous water desalination[J]. Advanced Materials,2019,31(23):e1900498. doi: 10.1002/adma.201900498
    [98] Guo Y H, Lu H Y, Zhao F, et al. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Advanced Materials,2020,32(11):e1907061. doi: 10.1002/adma.201907061
    [99] Sheng C M, Yang N, Yan Y T, et al. Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation[J]. Applied Thermal Engineering,2020,167(11):114712.
    [100] Zhang C, Xiao P, Ni F, et al. Converting pomelo peel into eco-friendly and low-consumption photothermic biomass sponge toward multifunctioal solar-to-heat conversion[J]. ACS Sustainable Chemistry & Engineering,2020,8(13):5328-5337.
    [101] Xu N, Hu X Z, Xu W C, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials,2017,29(28):1-5.
    [102] Li K, Chang T H, Li Z P, et al. Biomimetic mxene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management[J]. Advanced Energy Materials,2019,9(34):1901687. doi: 10.1002/aenm.201901687
    [103] Zhang P P, Li J, Lv L X, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano,2017,11(5):5087-5093. doi: 10.1021/acsnano.7b01965
    [104] Song H M, Liu Y H, Liu Z J, et al. Cold vapor generation beyond the input solar energy limit[J]. Advanced Science,2018,5(8):1800222. doi: 10.1002/advs.201800222
    [105] Liu H, Chen C J, Chen G, et al. High-performance solar steam device with layered channels: artificial tree with a reversed design[J]. Advanced Energy Materials,2018,8(8)-1701616.
    [106] Wang C B, Wang J L, LI Z T, et al. Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency[J]. Journal of Materials Chemistry A,2020,8(19):9528-9535. doi: 10.1039/D0TA01439G
    [107] Song L, Mu P, Geng L, et al. A novel salt-rejecting linen fabric-based solar evaporator for stable and efficient water desalination under highly saline water[J]. ACS Sustainable Chemistry & Engineering,2020,8(31):11845-11852.
    [108] Zhang Q, Hu R, Chen Y L, et al. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion[J]. Applied Energy,2020,276(7):115545.
    [109] Sun Y K, Zong X P, Qu D, et al. Water management by hierarchical structures for highly efficient solar water evaporation[J]. Journal of Materials Chemistry A,2021,9(11):7122-7128. doi: 10.1039/D1TA00113B
    [110] Wang X, Gan Q M, Chen R, et al. Water delivery channel design in solar evaporator for efficient and durable water evaporation with salt rejection[J]. ACS Sustainable Chemistry & Engineering,2020,8(21):7753-7761.
    [111] Li T, Liu H, Zhao X P, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport[J]. Advanced Functional Materials,2018,28(16):1707134. doi: 10.1002/adfm.201707134
    [112] Zhang W, Zhang G, Ji Q H, et al. Capillary-flow-optimized heat localization induced by an air-enclosed three-dimensional hierarchical network for elevated solar evaporation[J]. ACS Applied Materials Interfaces,2019,11(10):9974-9983. doi: 10.1021/acsami.8b21800
    [113] Wu L, Dong Z C, Cai Z R, et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature Communications,2020,11(1):521. doi: 10.1038/s41467-020-14366-1
    [114] Hong S, Shi Y, Li R Y, et al. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy[J]. ACS Applied Materials Interfaces,2018,10(34):28517-28524. doi: 10.1021/acsami.8b07150
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  136
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 修回日期:  2021-05-08
  • 网络出版日期:  2021-06-08
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回