留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of three-dimensional graphene networks for thermally conductive polymer composites: Constructions and applications

WU Ni CHE Sai LI Hua-wei WANG Chao-nan TIAN Xiao-juan LI Yong-feng

吴妮, 车赛, 李华玮, 王超男, 田晓娟, 李永峰. 三维石墨烯网络在导热聚合物复合材料中的构建及应用研究进展[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60089-6
引用本文: 吴妮, 车赛, 李华玮, 王超男, 田晓娟, 李永峰. 三维石墨烯网络在导热聚合物复合材料中的构建及应用研究进展[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60089-6
WU Ni, CHE Sai, LI Hua-wei, WANG Chao-nan, TIAN Xiao-juan, LI Yong-feng. A review of three-dimensional graphene networks for thermally conductive polymer composites: Constructions and applications[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60089-6
Citation: WU Ni, CHE Sai, LI Hua-wei, WANG Chao-nan, TIAN Xiao-juan, LI Yong-feng. A review of three-dimensional graphene networks for thermally conductive polymer composites: Constructions and applications[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60089-6

三维石墨烯网络在导热聚合物复合材料中的构建及应用研究进展

doi: 10.1016/S1872-5805(21)60089-6
基金项目: 国家自然科学基金(21808240,21908245,21776308);中国石油大学(北京)科研基金资助项目(2462018YJRC009)
详细信息
    通讯作者:

    李永峰,教授. E-mail: yfli@cup.edu.cn

  • 中图分类号: TQ127.1+1

A review of three-dimensional graphene networks for thermally conductive polymer composites: Constructions and applications

More Information
  • 摘要: 随着电子设备的耗电量和发热量不断增加,这对于热管理材料的散热性能提出了更高要求。石墨烯已被广泛用作导热填料以提高聚合物的导热性。然而,石墨烯纳米片在聚合物中的分散性差,极大地限制了其在热管理中的实际应用。构建相互连接的三维石墨烯网络是提高聚合物复合材料的导热性的一个有效策略。本综述总结了最近三维石墨烯基导热聚合物复合材料(3D GPCs)的构建和应用方面的研究进展。此外,还总结了提高3D GPCs导热系数的方法。最后,提出了对于当前3D GPCs的挑战和展望。
  • Figure  1.  Schematic illustration of various 3D graphene networks for highly thermally conductive polymer composites.

    Figure  2.  (a) (i) Growth profile of 3D GF by CVD using Ni foam as the template, (ii) Photo image of as-produced free-standing 3D GF film after removal of Ni template by chemical etching and (iii) SEM of free-standing GF[28]. (b) Flowchart for the preparation of graphene foam[29]. (c) Schematic for the synthesis process of GNs/GF/NR composites[30] .(Reproduced with permission).

    Figure  3.  (a) The preparation process of the GF/epoxy composite[35]. (b) Schematic illustration of (i) fabrication process of the DAGF and (ii) the corresponding structural change of each step based on the proposed dual-assembly method[36]. (c) SEM images of (i) MF, (ii) GO@MF and (iii) reduced GO (RGO)@MF[37]. (d) Illustration of the overall preparation procedures of the polymer nanocomposite[37]. (Reproduced with permission).

    Figure  4.  (a) Schematic illustration of the fabrication of anisotropic high-quality graphene aerogels[39] and (b) Fabrication and microstructure of 3D BN-rGO/epoxy composites: (i) the fabrication of 3D BN-rGO/epoxy composites, (ii) optical and (iii) cross-sectional SEM images of 3D BN-GO skeleton, (iv) SEM image shows the presence of BN large through-plane connected layers of GO and (v) SEM image of fractured surface of 3D BN-rGO/epoxy composites[40]. (Reproduced with permission).

    Figure  5.  (a) Diagrams of fabrication procedure for graphitized graphene aerogel (gGA)/silicon rubber (SR)[41]. (b) Simulation schematic of the thermal conductive path in PBGF composites[42]. (c) Preparation and structure of graphene/PBONF[49]. (d) Schematic illustration of the overall fabrication procedure of rGO-BN-NR film[45]. (e) (i) Cross-section SEM images of gGA[41]. SEM image of (ii) GF, (iii) BGF[42]and (iv) freezing dried hydrogel, showing a 3D PBONF network with homogeneously distributed GNS[49]. (v) SEM microstructure image of the dried gel of rGO-BN[45]. (Reproduced with permission)

    Figure  6.  (a) Devices fabrication process. (b) Printing devices using hybrid ink[52]. (c) SEM images of PS/GNP composite particles[56]. (d) Schematic illustration of preparation of the PS/GO-PDA composites under high pressure with a continuous three-dimensional network (Inset: photograph of the PS/GO-PDA thin film[57]) . (e) Preparation procedures of (PS/MWCNT)@GNP nanocomposites with the segregated double network[58]. (Reproduced with permission).

    Figure  7.  SEM images of the strut walls of freestanding GF samples after etching by (a) HCl and (b) (NH4)2S2O8[60] (All scale bars are 50 μm). (c) Raman spectra and (d) XPS spectra of GO, AGA, TAGA-1000, TAGA-1600, TAGA-2200 and TAGA-2800[63]. (Reproduced with permission).

    Figure  8.  (a) Fabrication process of MGW and MGW/epoxy nanocomposites[65]. (b) (i) Schematic illustrating the fabrication of anisotropically conductive epoxy composite, top-view SEM images of (ii) fGHF5, (iii) fGF, (iv) GHF5 and (v) GM. Digital images of hydrogels and corresponding foams dried under ambient conditions with different GO/GNP mass ratios of (vi) 1/0 and (vii) 1/5[68]. (c) (i, iii, v) Top-view and (ii, iv, vi) side-view SEM images of TAGA-2800 prepared by using three directional freezing rates: (i, ii) floating the copper disk on liquid nitrogen, (iii, iv) putting the disk on a copper cylinder that is dipped in liquid nitrogen, and (v, vi) hanging the disk above the liquid nitrogen and (vii) epoxy/TAGA1.5-2800 with different directional-freezing rates[63]. (Reproduced with permission).

    Figure  9.  (a) (i) Schematic configuration of the TIM performance test system and the heat flow diffusion path along the vertical direction. (ii) The photograph and the cross-sectional SEM image of the DAGF5/PDMS composites. (iii) The heater temperature evolution versus the running time at the power density of 50 W cm−2. (iv) Thermal shock stability in cyclic heating/cooling tests and (v) thermal durability in a long-term TIM performance test (10 days) using DAGF5/PDMS as a TIM[36]. (b) (i) Demonstration of PP/PDA/G composite as a thermal management material for heat dissipation of a LED lamp; (ii) The surface temperature variations of LED versus time; (iii) Comparison of infrared thermal images of LED integrated with PP/PDA/G and pure PP as thermal management materials[80]. (c) (i) Photograph of the in-situ test system. (ii) Profiles of the surface temperature-time of a ceramic heater at 4 V with fan cooling (insets are IR images of the c-GF/PDA/APTS/PDMS composite). (iii) Breakdown strength and (iv) electrical resistivity of studied materials[79]. (d) Visible light images and the corresponding IR images of CPUs integrated with self-made heat sinks[82]. (Reproduced with permission).

    Figure  10.  (a) Thermal energy storage and release: (i) Experimental setup for light-to-heat conversion; (ii) Schematic diagram of light-to-heat conversion and storage; (iii) Temperature evolution curves of pure PEG and composite PCMs and (iv) θ of the composite PCMs[86]. (b) Shape-stability with increasing temperature[86]. (c) (i-iii) The images of flexible GAF-PW CPCF, infrared imaging pictures of human model with GAF-PW CPCF coated on the one side of arm and chest (iv) under the irradiation for 210 s and (v) after removing the irradiation for 10 s[88]. (Reproduced with permission).

    Table  1.   Summary on thermal conductivity of polymer composites filled with 3D graphene prepared by different methods.

    SampleTC of matrix
    (W m−1 K−1)
    TC of composites
    (W m−1 K−1)
    Loading
    (%)
    TC enhancement
    efficiency (η)
    Density
    (g/cm3)
    MethodTesting
    Method
    Refs.
    3DGF/EP 0.1898 0.52 0.27 644.0 CVD LFA [29]
    GNs/GF/NR 0.13 10.64 6.2%(vol.) CVD LFA [30]
    MGW/EP(||) 0.2 8.8 8.3 518.0 0.096 CVD LFA [65]
    GF/PDA/APTS/PDMS(⊥) 0.18 1.62 11.62 69.0 1.31 CVD LFA [79]
    GF/PDA/APTS/PDMS(||) 28.77 1367.0
    GF/h-Fe3O4/PDMS(||) 0.18 28.12 12 1300.0 0.017 CVD LFA [92]
    GF/h-Fe3O4/PDMS(⊥) 2.42 103.7
    GF/EP 0.1758 8.04 6.8 657.8 Polymer template LFA [35]
    DAGF/EP(||) 0.2 24.8 13.3%(vol.) 0.27 Polymer template LFA [36]
    DAGF/EP(⊥) 62.4
    RGO/MF/PDMS 0.175 2.19 4.82 238.9 1.89 Polymer template Hot Disk [37]
    c-GA/MF/PEG 0.32 1.32 4.6 67.9 0.022 Polymer template Hot Disk [87]
    AGAs/PW(||) 0.35 2.68 8 mg/mL 0.025 Ice template LFA [39]
    AGAs/PW(⊥) 8.87
    BN-rGO/EP(⊥) 0.18 5.05 13.16%(vol.) Ice template LFA [40]
    TAGA/EP(⊥) 0.17 6.57 1.5 2509.8 Ice template LFA [63]
    TAGA/EP(||) 1.15 384.3
    PEG/HGA 0.31 1.43 2.25 160.6 Ice template Hot Disk [86]
    VAIGN/EP(⊥) 0.16 2.13 0.92%(vol.) 1.27 Ice template LFA [93]
    gGA/SR 0.23 1.26 0.5 895.65 Self-assembly Hot Disk [41]
    3D BNNS/GF/PA6 0.196 0.891 8.4 42.21 1.081 Self-assembly LFA [42]
    rGO/BN/NR(||) 16 260phr 1.57 Self-assembly LFA [45]
    GNS/PBONF 13.2 133 70 13.0 1.5 Self-assembly LFA [49]
    3D BNNT/GONS/EP 0.23 4.53 11.6%(vol.) Self-assembly Steady-state [50]
    (f)SiC/GO/EP 0.22 0.91 30 10.45 Self-assembly Hot Disk [51]
    GNP/RGO/octadecanol 0.23 5.92 12 206.2 0.21 Self-assembly LFA [67]
    GHF/EP(||) 0.21 3.22 35 41 0.42 Self-assembly LFA [68]
    GHF/EP(⊥) 8.43 111.8
    GNP/RGO/octadecanol 0.21 9.5 13.3 332.6 0.09 Self-assembly LFA [84]
    RGO/BN/EP 0.15 11.01 44 164.5 1.61 Self-assembly LFA [94]
    CF/GNP/EP 0.2 2 16.9 53.3 1.24 3D printing LFA [52]
    rGO/GNP/PDMS 0.186 3 18.1 83.6 1.1 Foaming method LFA [53]
    Graphene microspheres/EP 0.26 0.96 1 437.0 Liquid nitrogen driven assembly Hot Disk [54]
    GO/PDA/PS(||) 0.23 4.13 0.96%(vol.) Hot pressing LFA [57]
    GO/PDA/PS(⊥) 4.56
    PS/GNP/MWCNT 0.18 1.08 5 %(vol.) Hot pressing Hot Disk [58]
    RGO/TPU 0.1818 0.8 1.04 327.0 Hot pressing LFA [95]
    Note: enhancement efficiency: $\eta = \dfrac{ {TC - T{C_0} } }{ {100WT{C_0} } } \times 100$, Where η is TC enhancement efficiency, TC and TC0 are TC of composite and pure polymer, respectively. W is the weight loading of fillers.
    下载: 导出CSV
  • [1] Zhang F, Feng Y Y, Feng W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms[J]. Mater Sci Eng R Rep,2020,142:100580. doi: 10.1016/j.mser.2020.100580
    [2] Fang H M, Bai S L, Wong C P. Microstructure engineering of graphene towards highly thermal conductive composites[J]. Compos. Part A Appl Sci Manuf,2018,112:216-238. doi: 10.1016/j.compositesa.2018.06.010
    [3] He X H, Wang Y C. Recent advances in the rational design of thermal conductive polymer composites[J]. Ind Eng Chem Res,2021,60(3):1137-1154. doi: 10.1021/acs.iecr.0c05509
    [4] Guo Y Q, Ruan K P, Shi X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Compos Sci Technol,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134
    [5] Huang X Y, Zhi C Y, Lin Y, et al. Thermal conductivity of graphene-based polymer nanocomposites[J]. Mater Sci Eng R Rep,2020,142:100577. doi: 10.1016/j.mser.2020.100577
    [6] Fang H M, Bai S L, Wong C P. Microstructure engineering of graphene towards highly thermal conductive composites[J]. Compos Part A Appl Sci Manuf,2018,112:216-238. doi: 10.1016/j.compositesa.2018.06.010
    [7] Niu H Y, Ren Y J, Guo H C, et al. Recent progress on thermally conductive and electrical insulating rubber composites: Design, processing and applications[J]. Compos Commun,2020,22:100430. doi: 10.1016/j.coco.2020.100430
    [8] Salzano de Luna M, Wang Y, Zhai T, et al. Nanocomposite polymeric materials with 3D graphene-based architectures: from design strategies to tailored properties and potential applications[J]. Prog Polym Sci,2019,89:213-249. doi: 10.1016/j.progpolymsci.2018.11.002
    [9] Zhan H F, Nie Y H, Chen Y N, et al. Thermal transport in 3D nanostructures[J]. Adv Funct Mater,2020,30(8):1903841. doi: 10.1002/adfm.201903841
    [10] Weng D D, Song L L, Li W X, et al. Review on synthesis of three-dimensional graphene skeletons and their absorption performance for oily wastewater[J]. Environ Sci Pollut Res,2020:1-19.
    [11] Ma Y L, Chen J, Hu Y X, et al. Synthesis of three-dimensional graphene-based materials for applications in energy storage[J]. JOM,2020,72(6):2445-2459. doi: 10.1007/s11837-020-04074-y
    [12] Kim J E, Oh J H, Kotal M, et al. Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials[J]. Nano Today,2017,14:100-123. doi: 10.1016/j.nantod.2017.04.008
    [13] Sun Z X, Fang S Y, Hu Y H. 3D graphene materials: from understanding to design and synthesis control[J]. Chem Rev,2020,120(18):10336-10453. doi: 10.1021/acs.chemrev.0c00083
    [14] Zhang X, Zhao N, He C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design-A review[J]. Prog Mater Sci,2020,113:100672. doi: 10.1016/j.pmatsci.2020.100672
    [15] Li Z, Liu Z, Sun H Y, et al. Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene[J]. Chem Rev,2015,115(15):7046-7117. doi: 10.1021/acs.chemrev.5b00102
    [16] Xiao X Y, Beechem T E, Brumbach M T, et al. Lithographically defined three-dimensional graphene structures[J]. ACS Nano,2012,6(4):3573-3579. doi: 10.1021/nn300655c
    [17] Lavin-Lopez M P, Fernandez-Diaz M, Sanchez-Silva L, et al. Improving the growth of monolayer CVD-graphene over polycrystalline iron sheets[J]. New J Chem,2017,41(12):5066-5074. doi: 10.1039/C7NJ00281E
    [18] Zhan N, Wang G P, Liu J L. Cobalt-assisted large-area epitaxial graphene growth in thermal cracker enhanced gas source molecular beam epitaxy[J]. Appl Phys A,2011,105(2):341-345. doi: 10.1007/s00339-011-6612-9
    [19] Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat Mater,2011,10(6):424-428. doi: 10.1038/nmat3001
    [20] Kordatos A, Kelaidis N, Giamini S A, et al. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh (1 1 1) and electronic structure characterization[J]. Appl Surf Sci,2016,369:251-256. doi: 10.1016/j.apsusc.2016.02.023
    [21] Koren E, Sutter E, Bliznakov S, et al. Isolation of high quality graphene from Ru by solution phase intercalation[J]. Appl Phys Lett,2013,103(12):121602. doi: 10.1063/1.4821269
    [22] Seah C M, Chai S P, Mohamed A R. Mechanisms of graphene growth by chemical vapour deposition on transition metals[J]. Carbon,2014,70:1-21. doi: 10.1016/j.carbon.2013.12.073
    [23] Zhou M, Lin T Q, Huang F Q, et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage[J]. Adv Funct Mater,2013,23(18):2263-2269. doi: 10.1002/adfm.201202638
    [24] Ning G Q, Fan Z J, Wang G, et al. Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes[J]. Chem Comm,2011,47(21):5976-5978. doi: 10.1039/c1cc11159k
    [25] Tang C, Li B Q, Zhang Q, et al. CaO‐templated growth of hierarchical porous graphene for high‐power lithium–sulfur battery applications[J]. Adv Funct Mater,2016,26(4):577-585. doi: 10.1002/adfm.201503726
    [26] Chen K, Zhang F, Sun J Y, et al. Growth of defect-engineered graphene on manganese oxides for Li-ion storage[J]. Energy Stor Mater,2018,12:110-118. doi: 10.1016/j.ensm.2017.12.001
    [27] Huang H N, Bi H, Zhou M, et al. A three-dimensional elastic macroscopic graphene network for thermal management application[J]. J Mater Chem A,2014,2(43):18215-18218. doi: 10.1039/C4TA03801K
    [28] Zhang X F, Yeung K K, Gao Z L, et al. Exceptional thermal interface properties of a three-dimensional graphene foam[J]. Carbon,2014,66:201-209. doi: 10.1016/j.carbon.2013.08.059
    [29] Zhou H L Z, Wang H J, Du X S, et al. Facile fabrication of large 3D graphene filler modified epoxy composites with improved thermal conduction and tribological performance[J]. Carbon,2018,139:1168-1177. doi: 10.1016/j.carbon.2018.07.059
    [30] Wu Z H, Xu C, Ma C Q, et al. Synergistic effect of aligned graphene nanosheets in graphene foam for high‐performance thermally conductive composites[J]. Adv Mater,2019,31(19):1900199. doi: 10.1002/adma.201900199
    [31] Chen N, Pan Q M. Versatile fabrication of ultralight magnetic foams and application for oil–water separation[J]. ACS Nano,2013,7(8):6875-6883. doi: 10.1021/nn4020533
    [32] Chen J Z, Xu J L, Zhou S, et al. Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors[J]. Nano Energy,2016,25:193-202. doi: 10.1016/j.nanoen.2016.04.037
    [33] Wu W H, Huang X Y, Li K, et al. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion[J]. Appl Energy,2017,190:474-480. doi: 10.1016/j.apenergy.2016.12.159
    [34] Li Y, Shen B, Pei X L, et al. Ultrathin carbon foams for effective electromagnetic interference shielding[J]. Carbon,2016,100:375-385. doi: 10.1016/j.carbon.2016.01.030
    [35] Liu Z D, Chen Y P, Li Y F, et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement[J]. Nanoscale,2019,11(38):17600-17606. doi: 10.1039/C9NR03968F
    [36] Dai W, Lv L, Ma T F, et al. Maruyama S, Lin C T. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management[J]. Adv Sci,2021:2003734.
    [37] Qin M M, Xu Y X, Cao R, et al. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double‐continuous network of graphene and sponge[J]. Adv Funct Mater,2018,28(45):1805053. doi: 10.1002/adfm.201805053
    [38] Mortazavi Bohayra, Bardon J, Ahzi S. Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study[J]. Comput Mater Sci,2013,69:100-106. doi: 10.1016/j.commatsci.2012.11.035
    [39] Min P, Liu J, Li X F, et al. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real‐time and fast‐charging solar‐thermal energy conversion[J]. Adv Funct Mater,2018,28(51):1805365. doi: 10.1002/adfm.201805365
    [40] Yao Y M, Sun J J, Zeng X L, et al. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity[J]. Small,2018,14(13):1704044. doi: 10.1002/smll.201704044
    [41] Zhang W Y, Kong Q Q, Tao Z C, et al. 3D thermally cross‐linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material[J]. Adv Mater Interfaces,2019,6(12):1900147. doi: 10.1002/admi.201900147
    [42] Shao L B, Shi L Y, Li X H, et al. Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites[J]. Compos Sci Technol,2016,135:83-91. doi: 10.1016/j.compscitech.2016.09.013
    [43] Wang X L, Cheng X M, Li D, et al. Preparation a three-dimensional hierarchical graphene/stearic acid as a phase change materials for thermal energy storage[J]. Mater Res Express,2020,7(9):095506. doi: 10.1088/2053-1591/abb69e
    [44] Wang Z Y, Shen X, Garakani M A, et al. Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties[J]. ACS Appl Mater Interfaces,2015,7(9):5538-5549. doi: 10.1021/acsami.5b00146
    [45] Li J C, Zhao X Y, Wu W J, et al. Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability[J]. Carbon,2020,162:46-55. doi: 10.1016/j.carbon.2020.02.012
    [46] Ai W, Du Z Z, Liu J Q, et al. Formation of graphene oxide gel via the π-stacked supramolecular self-assembly[J]. RSC Adv,2012,2(32):12204-12209. doi: 10.1039/c2ra21179c
    [47] Zhang F, Lu Y H, Yang X, et al. A Flexible and High‐Voltage Internal Tandem Supercapacitor Based on Graphene‐Based Porous Materials with Ultrahigh Energy Density[J]. Small,2014,10(11):2285-2292. doi: 10.1002/smll.201303240
    [48] Zu S Z, Han B H. Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel[J]. J Phys Chem C,2009,113(31):13651-13657. doi: 10.1021/jp9035887
    [49] Wang Y J, Xia S, Li H, et al. Unprecedentedly tough, folding‐endurance, and multifunctional graphene‐based artificial nacre with predesigned 3D nanofiber network as matrix[J]. Adv Funct Mater,2019,29(38):1903876. doi: 10.1002/adfm.201903876
    [50] Zhang C, Huang R J, Wang Y G, et al. Self-assembled boron nitride nanotube reinforced graphene oxide aerogels for dielectric nanocomposites with high thermal management capability[J]. ACS Appl Mater Interfaces,2019,12(1):1436-1443.
    [51] He J, Wang H, Qu Q Q, et al. Self-assembled three-dimensional structure with optimal ratio of GO and SiC particles effectively improving the thermal conductivity and reliability of epoxy composites[J]. Compos Commun,2020,22:100448. doi: 10.1016/j.coco.2020.100448
    [52] Nguyen N, Melamed E, Park J G, et al. Direct printing of thermal management device using low‐cost composite ink[J]. Macromol Mater Eng,2017,302(10):1700135. doi: 10.1002/mame.201700135
    [53] Li J C, Zhao X Y, Wu W J, et al. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity[J]. Chem Eng J,2021,415:129054. doi: 10.1016/j.cej.2021.129054
    [54] Li C, Zeng X L, Tan L Y, et al. Three-dimensional interconnected graphene microsphere as fillers for enhancing thermal conductivity of polymer[J]. Chem Eng J,2019,368:79-87. doi: 10.1016/j.cej.2019.02.110
    [55] Yang L, Wang Z Q, Ji Y C, et al. Highly ordered 3d graphene-based polymer composite materials fabricated by “particle-constructing” method and their outstanding conductivity[J]. Macromolecules,2014,47(5):1749-1756. doi: 10.1021/ma402364r
    [56] Guan L Z, Zhao L, Wan Y J, et al. Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications[J]. Nanoscale,2018,10(31):14788-14811. doi: 10.1039/C8NR03044H
    [57] Yuan H, Wang Y, Li T, et al. Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network[J]. Nanoscale,2019,11(23):11360-11368. doi: 10.1039/C9NR02491C
    [58] Wu K, Lei C X, Huang R, et al. Design and preparation of a unique segregated double network with excellent thermal conductive property[J]. ACS Appl Mater Interfaces,2017,9(8):7637-7647. doi: 10.1021/acsami.6b16586
    [59] Thiyagarajan P, Yan Z, Yoon J C, et al. Thermal conductivity reduction in three dimensional graphene-based nanofoam[J]. RSC adv,2015,5(120):99394-99397. doi: 10.1039/C5RA19130K
    [60] Pettes M T, Ji H X, Ruoff R S, et al. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite[J]. Nano Lett,2012,12(6):2959-2964. doi: 10.1021/nl300662q
    [61] Xin G Q, Yao T K, Sun H T, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science,2015,349(6252):1083-1087. doi: 10.1126/science.aaa6502
    [62] Zhang Y P, Li D L, Tan X J, et al. High quality graphene sheets from graphene oxide by hot-pressing[J]. Carbon,2013,54:143-148. doi: 10.1016/j.carbon.2012.11.012
    [63] Li X H, Liu P F, Li X F, et al. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites[J]. Carbon,2018,140:624-633. doi: 10.1016/j.carbon.2018.09.016
    [64] Loeblein M, Tsang S H, Pawlik M, et al. High-density 3D-boron nitride and 3D-graphene for high-performance nano–thermal interface material[J]. ACS Nano,2017,11(2):2033-2044. doi: 10.1021/acsnano.6b08218
    [65] Shen X, Wang Z Y, Wu Y, et al. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance[J]. Mater Horizons,2018,5(2):275-284. doi: 10.1039/C7MH00984D
    [66] Shen X, Kim J K. 3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: recent advances and perspectives[J]. Functional Composites and Structures,2020,2(2):022001. doi: 10.1088/2631-6331/ab953a
    [67] Yang J, Li X F, Han S, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability[J]. J Mater Chem A,2016,4(46):18067-18074. doi: 10.1039/C6TA07869A
    [68] An F, Li X F, Min P, et al. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities[J]. ACS Appl Mater Interfaces,2018,10(20):17383-17392. doi: 10.1021/acsami.8b04230
    [69] Hu D C, Liu H Q, Ma W S. Rational design of nanohybrids for highly thermally conductive polymer composites[J]. Compos Commun,2020,21:100427. doi: 10.1016/j.coco.2020.100427
    [70] Zhao Y H, Zhang Y F, Bai S L, et al. Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties[J]. Compos B Eng,2016,94:102-108. doi: 10.1016/j.compositesb.2016.03.056
    [71] Zhao Y H, Zhang Y F, Wu Z K, et al. Synergic enhancement of thermal properties of polymer composites by graphene foam and carbon black[J]. Compos B Eng,2016,84:52-58. doi: 10.1016/j.compositesb.2015.08.074
    [72] Kholmanov I, Kim J, Ou E, et al. Continuous carbon nanotube–ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials[J]. ACS Nano,2015,9(12):11699-11707. doi: 10.1021/acsnano.5b02917
    [73] Li J C, Zhao X Y, Zhang Z X, et al. Construction of interconnected Al2O3 doped rGO network in natural rubber nanocomposites to achieve significant thermal conductivity and mechanical strength enhancement[J]. Compos Sci Technol,2020,186:107930. doi: 10.1016/j.compscitech.2019.107930
    [74] Renteria J, Legedza S, Salgado R, et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications[J]. Mater Des,2015,88:214-221. doi: 10.1016/j.matdes.2015.08.135
    [75] Zhang Y H, Heo Y J, Son Y R, et al. Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials[J]. Carbon,2019,142:445-460. doi: 10.1016/j.carbon.2018.10.077
    [76] Li S T, Yu S H, Feng Y. Progress in and prospects for electrical insulating materials[J]. High Volt,2016,1(3):122-129. doi: 10.1049/hve.2016.0034
    [77] Hsiao Mi C, Ma C C M, Chiang J C, et al. Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide–silica hybrid nanosheets[J]. Nanoscale,2013,5(13):5863-5871. doi: 10.1039/c3nr01471a
    [78] Sun R H, Yao H, Zhang H B, et al. Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites[J]. Compos Sci Technol,2016,137:16-23. doi: 10.1016/j.compscitech.2016.10.017
    [79] Fang H M, Zhao Y H, Zhang Y F, et al. Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties[J]. ACS Appl Mater Interfaces,2017,9(31):26447-26459. doi: 10.1021/acsami.7b07650
    [80] Song N, Cao D L, Luo X, et al. Highly thermally conductive polypropylene/graphene composites for thermal management[J]. Compos Part A Appl Sci Manuf,2020,135:105912. doi: 10.1016/j.compositesa.2020.105912
    [81] Liu Y J, Lu J Y, Cui Y B. Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler[J]. Carbon Resources Conversion,2020,3:29-35. doi: 10.1016/j.crcon.2019.12.003
    [82] Li Y, Zhu Y F, Jiang G P, et al. Boosting the heat dissipation performance of graphene/polyimide flexible carbon film via enhanced through‐plane conductivity of 3D hybridized structure[J]. Small,2020,16(8):1903315. doi: 10.1002/smll.201903315
    [83] Vasu A, Hagos F Y, Noor M M, et al. Corrosion effect of phase change materials in solar thermal energy storage application[J]. Renew Sust Energ Rev,2017,76:19-33. doi: 10.1016/j.rser.2017.03.018
    [84] Liu P F, An F, Lu X Y, et al. Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels[J]. Compos Sci Technol,2021,201:108492. doi: 10.1016/j.compscitech.2020.108492
    [85] Yang J, Qi G Q, Bao R Y, et al. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials[J]. Energy Stor Mater,2018,13:88-95. doi: 10.1016/j.ensm.2017.12.028
    [86] Yang Jie, Qi G Q, Liu Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage[J]. Carbon,2016,100:693-702. doi: 10.1016/j.carbon.2016.01.063
    [87] Liao H H, Chen W H, Liu Y, et al. A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability[J]. Compos Sci Technol,2020,189:108010. doi: 10.1016/j.compscitech.2020.108010
    [88] Sun K Y, Dong H S, Kou Y, et al. Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications[J]. Chem Eng J,2021,149:129637.
    [89] Cheng Y H, Zhou S B, Hu P, et al. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction[J]. Sci. Rep.,2017,7(1):1-11. doi: 10.1038/s41598-016-0028-x
    [90] Wang, K L, Wang W, Wang H B, et al. 3D graphene foams/epoxy composites with double-sided binder polyaniline interlayers for maintaining excellent electrical conductivities and mechanical properties[J]. Compos. Part A Appl. Sci. Manuf.,2018,110:246-257. doi: 10.1016/j.compositesa.2018.05.001
    [91] Song S Q, Zhang Y. Construction of a 3D multiple network skeleton by the thiol-Michael addition click reaction to fabricate novel polymer/graphene aerogels with exceptional thermal conductivity and mechanical properties[J]. J. Mater. Chem. A,2017,5(42):22352-22360. doi: 10.1039/C7TA07173F
    [92] Fang H M, Guo H C, Hu Y R, et al. In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity[J]. Compos Sci Technol,2020,188:107975. doi: 10.1016/j.compscitech.2019.107975
    [93] Lian G, Tuan C C, Li L Y, et al. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading[J]. Chem. Mater.,2016,28(17):6096-6104. doi: 10.1021/acs.chemmater.6b01595
    [94] An F, Li X F, Min P, et al. Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites[J]. Carbon,2018,126:119-127. doi: 10.1016/j.carbon.2017.10.011
    [95] Li A, Zhang C, Zhang Y F. RGO/TPU composite with a segregated structure as thermal interface material[J]. Compos Part A Appl Sci Manuf,2017,101:108-114. doi: 10.1016/j.compositesa.2017.06.009
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  22
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-24
  • 修回日期:  2021-04-29
  • 网络出版日期:  2021-09-03

目录

    /

    返回文章
    返回