留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质炭材料在金属锂负极中的应用

刘奥 刘铁峰 袁华栋 王垚 刘育京 罗剑敏 佴建威 陶新永

刘奥, 刘铁峰, 袁华栋, 王垚, 刘育京, 罗剑敏, 佴建威, 陶新永. 生物质炭材料在金属锂负极中的应用. 新型炭材料(中英文), 2022, 37(4): 658-674. doi: 10.1016/S1872-5805(22)60620-6
引用本文: 刘奥, 刘铁峰, 袁华栋, 王垚, 刘育京, 罗剑敏, 佴建威, 陶新永. 生物质炭材料在金属锂负极中的应用. 新型炭材料(中英文), 2022, 37(4): 658-674. doi: 10.1016/S1872-5805(22)60620-6
LIU Ao, LIU Tie-feng, YUAN Hua-dong, WANG Yao, LIU Yu-jing, LUO Jian-min, NAI Jian-wei, TAO Xin-yong. A review of biomass-derived carbon materials for lithium metal anodes. New Carbon Mater., 2022, 37(4): 658-674. doi: 10.1016/S1872-5805(22)60620-6
Citation: LIU Ao, LIU Tie-feng, YUAN Hua-dong, WANG Yao, LIU Yu-jing, LUO Jian-min, NAI Jian-wei, TAO Xin-yong. A review of biomass-derived carbon materials for lithium metal anodes. New Carbon Mater., 2022, 37(4): 658-674. doi: 10.1016/S1872-5805(22)60620-6

生物质炭材料在金属锂负极中的应用

doi: 10.1016/S1872-5805(22)60620-6
基金项目: 国家自然科学基金(U21A20174,51722210和51972285),浙江省科学基金(LY17E0202010,LD18E020003,LQ20E030012),及浙江省领先创新团队引进项目(2020R011002).
详细信息
    作者简介:

    刘奥:刘 奥,工学硕士. E-mail:1633827493@qq.com

    通讯作者:

    袁华栋,博士后. E-mail:hdyuan@zjut.edu.cn

    陶新永,教授. E-mail:tao@zjut.edu.cn

  • 中图分类号: TQ127.1+1

A review of biomass-derived carbon materials for lithium metal anodes

Funds: National Natural Science Foundation of China (U21A20174, 51722210 and 51972285), Natural Science Foundation of Zhejiang Province (LY17E0202010, LD18E020003 and LQ20E030012), Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2020R01002).
More Information
  • 摘要: 金属锂具有超高理论容量和最低还原电位,被认为是高能量密度电池负极材料的“圣杯”。然而,由于金属锂无宿主、锂枝晶不可控生长、固态电解质界面膜(SEI膜)不稳定以及“死锂”累积等一系列问题,严重制约着金属锂负极的实用化进程。生物质炭材料具有高机械强度、高导电性、高比表面积和良好的化学稳定性等特性,是金属锂宿主材料的理想候选者之一。本文综述了近年来利用生物质炭材料构建金属锂沉积骨架的研究进展。通过讨论生物质炭材料的结构、孔隙大小、孔隙率及亲锂基团修饰等对抑制金属锂枝晶生长,构筑循环稳定金属锂负极的影响,总结生物质炭材料的合理设计和应用,提出了生物质炭材料未来发展的趋势以及所面临的挑战。
  • FIG. 1651.  FIG. 1651.

    FIG. 1651..  FIG. 1651.

    图  1  生物质炭材料应用在金属锂负极的优势

    Figure  1.  The advantages of biomass-derived carbon materials for Li metal anodes

    图  2  (a)原始BC膜的数字图像[72];(b)炭化BC膜的数字图像[72];(c)样品BC-1500的TEM图像[72];(d)棉花的SEM图[73];(e)1∶0.5棉碱质量比下活化后样品的SEM图[73];(f)蒲公英的SEM图[79];(g)柳絮的SEM图[80];(h)棉花的SEM图[74];(i)木棉的SEM图[75]

    Figure  2.  (a) The digital image of a pristine BC film[72]; (b) The digital image of a soft carbonized BC film[72]; (c) TEM image of BC-1500[72]; (d) SEM image of original morphology before activation[73]; (e) SEM image of sample morphology after activation under the cotton-alkali mass ratios of 1∶0.5[73]; (f) SEM image of dandelion[79]; (g) SEM image of the morphology of catkin[80]; (h) SEM image of cotton[74]; (i) SEM image of kapok[75]. Reprinted with permission.

    图  3  (a)HPTCF制备示意图[83];(b)HPTCF的SEM图像[83];(c)原始3D-HCF的横截面的SEM图像[75];(d)电镀1 mAh/cm2金属锂横截面的SEM图像;标尺为50 mm[75];(e)用KOH/尿素溶液浸渍样品的SEM图像[74];(f)KOH/尿素溶液浸渍样品在600 ℃炭化后的SEM图[74];(g)KOH/尿素溶液浸渍样品在800 ℃炭化后的SEM照片[74];(h)以LiFePO4为正极,HCFs@Li (Cu@Li或Li箔)为负极的全电池循环性能[75]

    Figure  3.  (a) The schematic diagram of HPTCF preparation[83]; (b) SEM image of HPTCF;[83] (c) SEM image of the pristine 3D-HCFs[75]; (d) SEM image after plating Li into the 3D-HCFs at 1 mAh / cm2; Scale bars, 50 mm[75]; (e) SEM image of samples impregnated with KOH/urea solution[74]; (f) SEM image of samples impregnated with KOH/urea solution carbonized at 600 °C[74]; (g) SEM image of samples impregnated with KOH/urea solution carbonized at 800 °C[74]; (h) Cycling performance of the full cells with LiFePO4 as the cathode and 3D-HCFs@Li (Cu@Li, or Li foil) as the anode at 0.2 C[75]. Reprinted with permission.

    图  4  (a)淀粉制生物质炭的SEM图[88];(b)黄麻制生物质炭的SEM图[88];(c)麦桔制生物质炭的SEM图[90];(d)大麻纤维素制生物质炭的SEM图[92];(e)SNC的SEM图[5];(f)CoNC材料的SEM图[89];(g)CoNC材料的HRTEM图[89];(h)CoNC材料N 1s的XPS光谱图[89];(i)SNC的STEM图[5];(j)SNC的元素分析图[5];(k)SNC的TEM图像(插图显示SAED模式)[5];(l)麦桔制生物质炭的TEM照片[90]

    Figure  4.  (a) SEM image of starch-based biomass carbon[88]; (b) SEM image of jute-based biomass carbon[88]; (c) SEM image of wheat straw-based biomass carbon[90]; (d) SEM image of hemp cellulose-based biomass carbon[92]; (e) SEM image of SNC[5]; (f) SEM image of CoNC[89]; (g) HRTEM image of CoNC[89]; (h) XPS spectrum of N 1s of CoNC[89]; (i) SEM image of SNC[5]; (g) elemental map of SNC[5]; (k) TEM image of SNC (inset shows SAED mode)[5]; (l) TEM image of wheat straw-based biomass carbon[90]. Reprinted with permission.

    图  5  (a)茄子及其横截面形貌的数字图像[113];(b)具有互连通道状结构的EP示意图[113];(c)熔融锂金属复合EP的示意图[113];(d)EP–Li金属锂复合负极涂覆LiF薄膜的示意图[113];(e)Li/C-wood复合锂金属负极制备示意图[112];(f)C-wood、ZnO修饰C-Wood和Li/C-wood(尺寸为5 mm×7 mm)负极的数字图像,显示锂金属成功注入C-wood孔道中[112];(g)银纳米颗粒修饰木材衍生炭材料(Ag@WDC)的结构示意图和SEM图[111]

    Figure  5.  (a) The Photograph of eggplant and its cross-sectional morphology[113]; (b) The schematic diagram of EP with interconnected channel-like structure[113]; (c) The schematic diagram of EP after Li metal droplet[113]; (d) The schematic diagram carbide of EP–Li metal composite anode, and a layer of LiF film was further coated[113]; (e) The schematic diagram of material design and subsequent synthesis, from C-wood (left), to ZnO-coated C-wood (middle), and finally to Li/C-wood composite (right) [112]; (f) The digital images of C-wood, ZnO-coated wood and Li/C-wood (dimensions of 5 mm × 7 mm), showing successful infusion of Li metal into C-wood[112]; (g) The schematic diagram and SEM of the composite of dendrite-free lithium anode with silver wood-derived carbon (Ag@WDC)[111]. Reprinted with permission.

    图  6  (a)MgO@WC/Li复合锂金属负极合成示意图[114];(b)木材、WC、MgO@WC和MgO@WC/Li复合材料相应的SEM图[114];(c)ZnO@HPC合成示意图[100];(d)稻壳制炭材料合成示意图[101]

    Figure  6.  (a) A schematic of the material design and the subsequent synthesis from natural wood, to WC, MgO@WC, and, finally, to MgO@WC/Li composite within 20 mAh/cm2 Li[114]; (b) The corresponding SEM images of wood, WC, MgO@WC and MgO@WC/Li composite[114]; (c) The schematic diagram of the synthesis of ZnO@HPC scaffolds[100]; (d) The schematic diagram of carbon materials from rice husk[101]. Reprinted with permission.

    表  1  活化剂和炭化温度对生物质炭材料比表面积和孔结构的影响

    Table  1.   The effects of activator and carbonization temperature on specific surface area and pore structure of biomass-derived carbon materials

    Raw materialActive agentCarbonization temperatureMass ratio of cotton and active agentSpecific surface area(m2/g)Pore volume(m3/g)Reference
    CottonKOH7001:0.5354.20.139[73]
    CottonKOH7001:1715.50.280[73]
    CottonKOH7001:2401.3/[73]
    CottonKOH7001:023.1/[73]
    Cotton/600/3140.188[74]
    Cotton/800/4010.268[74]
    CottonKOH600/12810.477[74]
    CottonKOH800/14360.697[74]
    CottonUrea600/3870.194[74]
    CottonUrea800/4520.219[74]
    CottonKOH
    /Urea
    600/10870.514[74]
    CottonKOH
    /Urea
    800/10770.532[74]
    下载: 导出CSV

    表  2  不同生物质炭材料结构、比表面积以及作为金属锂沉积骨架的电化学性能差异

    Table  2.   Comparison of structure, surface area and electrochemical performance of different biomass-derived carbon materials as host for Li metal.

    Synthetic schemesRaw materialsProductionStructureSpecific surface area(m2/g)PerformanceReference
    Freeze-drying and Pyrolysis carbonizationBacterial cellulose3D Li-BC1D/600 h at
    1 mA/cm2
    [72]
    Pyrolysis carbonization and ActivationCottonZnO@HPC@Li1D715.5500 h at 0.5 mA/cm2[73]
    Pyrolysis carbonizationCotton3D-HCFs@Li1D14361200 h at 1 mA/cm2[75]
    Pyrolysis carbonizationCotton fabricHPTCF@Li1D631300 h at 1 mA/cm2[83]
    Pyrolysis carbonization and TemplateStarchCoNC@Li2D719.7400 cycles at 2 mA/cm2[89]
    Pyrolysis carbonizationGelatin and ChitosanSNC@Li2D15761500 h at 1 mA/cm2[5]
    Pyrolysis carbonizationWoodLi/C-wood3D/560 h at 1 mA/cm2[112]
    Freeze-drying and Pyrolysis carbonizationEgg plantEP–LiF3D1174.2500 h at 1 mA/cm2[113]
    Pyrolysis carbonizationWoodAg-WDC3D/450 h at 1 mA/cm2[111]
    Pyrolysis carbonization and ActivationBamboo fiberZnO@HPC3D958200 cycles at 2.0 mA/cm2[100]
    Pyrolysis carbonizationRice huskRC@Li3D/240 cycles at 1 mA/cm2[101]
    下载: 导出CSV
  • [1] Jiang L, Sheng L, Fan Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage[J]. Science China Materials,2017,61(2):133-158. doi: https://doi.org/10.1007/s40843-017-9169-4
    [2] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015,7(1):19-29. doi: 10.1038/nchem.2085
    [3] Hua X, Eggeman A S, Castillo-Martinez E, et al. Revisiting metal fluorides as lithium-ion battery cathodes[J]. Nature Materials,2021,20(6):841-850. doi: 10.1038/s41563-020-00893-1
    [4] Xiao A W, Lee H J, Capone I, et al. Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes[J]. Nature Materials,2020,19(6):644-654. doi: 10.1038/s41563-020-0621-z
    [5] Chen M, Zheng J, Sheng O, et al. Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode[J]. Journal of Materials Chemistry A,2019,7(31):18267-18274. doi: 10.1039/C9TA05684J
    [6] Zhang X Q, Cheng X B, Zhang Q. Advances in Interfaces between Li Metal Anode and Electrolyte[J]. Advanced Materials Interfaces,2018,5(2):1701097. doi: 10.1002/admi.201701097
    [7] Yuan H D, Nai J W, Tian H, et al. An ultrastable lithium metal anode enabled by designed metal fluoride spansules[J]. Science Advances,2020,6(10):eaaz3112. doi: 10.1126/sciadv.aaz3112
    [8] Wang H S, Lin D C, Liu Y Y, et al. Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework[J]. Science Advances,2017,3(9):e1701301. doi: 10.1126/sciadv.1701301
    [9] Yuan H D, Liu T F, Liu Y J, et al. A review of biomass materials for advanced lithium-sulfur batteries[J]. Chemical Science,2019,10(32):7484-7495. doi: 10.1039/C9SC02743B
    [10] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O-2 and Li-S batteries with high energy storage[J]. Nature Materials,2012,11(1):19-29. doi: 10.1038/nmat3191
    [11] Yuan H D, Ding X F, Liu T F, et al. A review of concepts and contributions in lithium metal anode development[J]. Materials Today,2022, 53:1369-7021.
    [12] Zheng J H, Ju Z J, Zhang B L, et al. Lithium ion diffusion mechanism on the inorganic components of the solid-electrolyte interphase[J]. Journal of Materials Chemistry A,2021,9(16):10251-10259. doi: 10.1039/D0TA11444H
    [13] Xia C, Kwok C Y, Nazar L F. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide[J]. Science,2018,361(6404):777-781. doi: 10.1126/science.aas9343
    [14] Yan C, Cheng X B, Tian Y, et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition[J]. Advanced Materials,2018,30(25):1707629. doi: 10.1002/adma.201707629
    [15] Zhang T, Lu H C, Yang J, et al. Stable lithium metal anode enabled by a lithiophilic and electron/ion conductive framework[J]. ACS Nano,2020,14(5):5618-5627. doi: 10.1021/acsnano.9b10083
    [16] Harry K J, Hallinan D T, Parkinson D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials,2014,13(1):69-73. doi: 10.1038/nmat3793
    [17] Liu L, Yin Y X, Li J Y, et al. Uniform lithium nucleation/growth Induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials,2018,30(10):1706216. doi: 10.1002/adma.201706216
    [18] Jin C B, Liu T F, Sheng O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy,2021,6(4):378-387. doi: 10.1038/s41560-021-00789-7
    [19] Liu Y J, Ju Z J, Zhang B L, et al. Visualizing the sensitive lithium with atomic precision: Cryogenic electron microscopy for batteries[J]. Accounts of Chemical Research,2021,54(9):2088-2099. doi: 10.1021/acs.accounts.1c00120
    [20] Yuan H D, Wu M, Zheng J H, et al. Empowering metal phosphides anode with catalytic attribute toward superior cyclability for Lithium-Ion storage[J]. Advanced Functional Materials,2019,29(17):1809051. doi: 10.1002/adfm.201809051
    [21] Deng W, Zhou X F, Fang Q L, et al. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes[J]. Advanced Energy Materials,2018,8(12):1703152. doi: 10.1002/aenm.201703152
    [22] Zhang R, Cheng X B, Zhao C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials,2016,28(11):2155-2162. doi: 10.1002/adma.201504117
    [23] Yin Y C, Yu Z L, Ma Z Y, et al. Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode[J]. National Science Review,2019,6(2):247-256. doi: 10.1093/nsr/nwy148
    [24] Sun Z W, Jin S, Jin H C, et al. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes[J]. Advanced Materials,2018,30(32):1800884. doi: 10.1002/adma.201800884
    [25] Jin C B, Sheng O W, Chen M, et al. Armed lithium metal anodes with functional skeletons[J]. Materials Today Nano,2021,13:100103. doi: 10.1016/j.mtnano.2020.100103
    [26] Liu Y J, Wu Y X, Zheng J L, et al. Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes[J]. Nano Energy,2021,82:105723. doi: 10.1016/j.nanoen.2020.105723
    [27] Zhang B L, Shi H D, Ju Z J, et al. Arrayed silk fibroin for high-performance Li metal batteries and atomic interface structure revealed by cryo-TEM[J]. Journal of Materials Chemistry A,2020,8(48):26045-26054. doi: 10.1039/D0TA09753E
    [28] Wu H, Zhuo D, Kong D S, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications, 2014, 5(1): 5-6. DOI: https://doi.org/10.1038/ncomms6193.
    [29] Lee H, Ren X D, Niu C J, et al. Suppressing lithium dendrite growth by metallic coating on a separator[J]. Advanced Functional Materials,2017,27(45):1704391. doi: 10.1002/adfm.201704391
    [30] Liu Y J, Tao X Y, Wang Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries[J]. Science,2022,375(6582):739-745. doi: 10.1126/science.abn1818
    [31] Ju Z, Nai J, Wang Y, et al. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy[J]. Nature communications,2020,11(1):488. doi: 10.1038/s41467-020-14358-1
    [32] Chen M, Zheng J H, Liu Y J, et al. Marrying ester group with lithium salt: Cellulose‐acetate‐enabled LiF‐enriched interface for stable lithium metal anode[J]. Advanced Functional Materials,2021,31(36):2102228. doi: 10.1002/adfm.202102228
    [33] Piao N, Ji X, Xu H, et al. Countersolvent electrolytes for lithium‐metal batteries[J]. Advanced Energy Materials,2020,10(10):1903568. doi: 10.1002/aenm.201903568
    [34] Sheng O W, Jin C B, Ding X F, et al. A decade of progress on solid-state electrolytes for secondary batteries: Advances and contributions[J]. Advanced Functional Materials,2021,31(27):2100891. doi: 10.1002/adfm.202100891
    [35] Sheng O W, Zheng J H, Ju Z J, et al. In situ construction of a LiF-Enriched interface for stable all-solid-state batteries and its origin revealed by Cryo-TEM[J]. Advanced Materials,2020,32(34):2000223.
    [36] Ma C, Dai K, Hou H S, et al. High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers[J]. Advanced Science,2018,5(5):1700996. doi: 10.1002/advs.201700996
    [37] Bouchet R, Maria S, Meziane R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nature Materials,2013,12(5):452-457. doi: 10.1038/nmat3602
    [38] Liu T F, Zheng J L, Hu H L, et al. In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries[J]. Journal of Energy Chemistry,2021,55:272-278. doi: 10.1016/j.jechem.2020.07.009
    [39] Zhu Z H, Liu Y J, Ju Z J, et al. Synthesis of diverse green carbon nanomaterials through fully utilizing biomass carbon source assisted by KOH[J]. ACS Applied Materials & Interfaces,2019,11(27):24205-24211 DOI.org/10.1021/acsami.9b08420.
    [40] Huang G, Han J, Zhang F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials,2019,31(2):1805334.
    [41] Chen D, Huang S, Zhong L, et al. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture[J]. Advanced Functional Materials,2019,30(7):1907717.
    [42] Liu J, Yuan H, Tao X Y, et al. Recent progress on biomass‐derived ecomaterials toward advanced rechargeable lithium batteries[J]. EcoMat,2020,2(1):e12019. doi: DOI.org/10.1002/eom2.12019
    [43] Zheng G Y, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology,2014,9(8):618-623. doi: 10.1038/nnano.2014.152
    [44] Siwal S S, Zhang Q B, Devi N, et al. Carbon-based polymer nanocomposite for high-performance energy storage applications[J]. Polymers,2020,12(3):505. doi: 10.3390/polym12030505
    [45] Deng J, Li M M, Wang Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion[J]. Green Chemistry,2016,18(18):4824-4854. doi: 10.1039/C6GC01172A
    [46] Zheng X Y, Luo J Y, Lv W, et al. Two-dimensional porous carbon: Synthesis and ion-transport properties[J]. Advanced Materials,2015,27(36):5388-5395. doi: 10.1002/adma.201501452
    [47] Chen Y, Shi J L. Mesoporous carbon biomaterials[J]. Science China Materials,2015,58(3):241-257. doi: 10.1007/s40843-015-0037-2
    [48] Song G, Qin F Z, Yu J F, et al. Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks[J]. Journal of Hazardous Materials,2022,424:127663. doi: 10.1016/j.jhazmat.2021.127663
    [49] Tang X F, Liu D, Wang Y J, et al. Research advances in biomass-derived nanostructured carbons and their composite materials for electrochemical energy technologies[J]. Progress in Materials Science,2021,118:100770. doi: 10.1016/j.pmatsci.2020.100770
    [50] Gaddam R R, Yang D F, Narayan R, et al. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries[J]. Nano Energy,2016,26:346-352. doi: 10.1016/j.nanoen.2016.05.047
    [51] Lai F L, Miao Y E, Zuo L Z, et al. Biomass-derived nitrogen-doped carbon nanofiber network: A facile template for decoration of ultrathin nickel-cobalt layered double hydroxide nanosheets as high-performance asymmetric supercapacitor electrode[J]. Small,2016,12(24):3235-3244. doi: 10.1002/smll.201600412
    [52] Stanzione J, La Scala J. Sustainable polymers and polymer science: Dedicated to the life and work of Richard P. Wool[J]. Journal of Applied Polymer Science,2016,133(45):44212. doi: 10.1002/app.44212
    [53] Niu J, Shao R, Liang J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors[J]. Nano Energy,2017,36:322-330.
    [54] Yu H, Zhang W L, Li T, et al. Capacitive performance of porous carbon nanosheets derived from biomass cornstalk[J]. RSC Advances,2017,7(2):1067-1074. doi: 10.1039/C6RA25899A
    [55] Wang Z H, Shen D K, Wu C F, et al. State-of-the-art on the production and application of carbon nanomaterials from biomass[J]. Green Chemistry,2018,20(22):5031-5057. doi: 10.1039/C8GC01748D
    [56] Jin C B, Nai J W, Sheng O W, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy & Environmental Science,2021,14(3):1326-1379. doi: DOI.org/10.1039/D0EE02848G
    [57] Wang Y L, Zhang M C, Shen X Y, et al. Biomass-derived carbon materials: Controllable preparation and versatile applications[J]. Small,2021,17(40):2008079. doi: 10.1002/smll.202008079
    [58] Yang Q W, Zhang Z Q, Sun X G, et al. Ionic liquids and derived materials for lithium and sodium batteries[J]. Chemical Society Reviews,2018,47(6):2020-2064. doi: 10.1039/C7CS00464H
    [59] Chang J, Shang J, Sun Y, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications,2018,9(1):1-11. doi: 10.1038/s41467-017-02088-w
    [60] Shi P, Li T, Zhang R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced Materials,2019,31(8):1807131. doi: 10.1002/adma.201807131
    [61] Wang T, Villegas Salvatierra R, Jalilov A S, et al. Ultrafast charging high capacity asphalt-lithium metal batteries[J]. ACS Nano,2017,11(11):10761-10767. doi: 10.1021/acsnano.7b05874
    [62] Xiong W S, Xia Y, Jiang Y, et al. Highly conductive and robust three-dimensional host with excellent alkali metal infiltration boosts ultrastable lithium and sodium metal anodes[J]. ACS Applied Materials & interfaces,2018,10(25):21254-21261.
    [63] Wu H L, Zhang Y B, Deng Y Q, et al. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes[J]. Science China Materials,2019,62(1):87-94. doi: 10.1007/s40843-018-9298-x
    [64] He S J, Chen W. Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors[J]. Journal of Power Sources,2015,294:150-158. doi: 10.1016/j.jpowsour.2015.06.051
    [65] Jiang Q, Zhang Z H, Yin S Y, et al. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries[J]. Applied Surface Science,2016,379:73-82. doi: 10.1016/j.apsusc.2016.03.204
    [66] Wei T Y, Wei X L, Gao Y, et al. Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors[J]. Electrochimica Acta,2015,169:186-194. doi: 10.1016/j.electacta.2015.04.082
    [67] Liu B, Zhou X, Chen H, et al. Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance[J]. Electrochimica Acta,2016,208:55-63. doi: 10.1016/j.electacta.2016.05.020
    [68] Rahman K U, Ferreira-Neto E P, Rahman G U, et al. Flexible bacterial cellulose-based BC-SiO2-TiO2-Ag membranes with self-cleaning, photocatalytic, antibacterial and UV-shielding properties as a potential multifunctional material for combating infections and environmental applications[J]. Journal of Environmental Chemical Engineering,2021,9(1):104708.
    [69] Long C, Qi D, Wei T, et al. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose[J]. Advanced Functional Materials,2014,24(25):3953-3961. doi: 10.1002/adfm.201304269
    [70] Shan D D, Yang J, Liu W, et al. Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2016,4(35):13589-13602. doi: 10.1039/C6TA05406D
    [71] Hao X D, Wang J, Ding B, et al. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources,2017,352:34-41. doi: 10.1016/j.jpowsour.2017.03.088
    [72] Zhang Y L Q, Han J, et al. Bacterial cellulose-derived three-dimensional carbon current collectors for dendrite-free lithium metal anodes[J]. Acta Physica-Chimica Sinica,2021,37(2):2008088. doi: DOI:10.3866/PKU.WHXB202008088
    [73] Gong L, Zhang D, Jiang C, et al. 3D lithiophilic ZnO modified biomass porous carbon derived from absorbent cotton for highly stable lithium metal anode[J]. Journal of Central South University of Science and Technology,2020,51(11):3233-3241.
    [74] Shen W, Hu T, Wang P, et al. Hollow porous carbon fiber from cotton with nitrogen doping[J]. Chempluschem,2014,79(2):284-289. doi: 10.1002/cplu.201300359
    [75] Liu L, Yin Y-X, Li J-Y, et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes[J]. Joule,2017,1(3):563-575. doi: 10.1016/j.joule.2017.06.004
    [76] Liu Y, Shi Z, Gao Y, et al. Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes[J]. ACS Applied Materials & interfaces,2016,8(42):28283-28290. doi: DOI.org/10.1021/acsami.5b11558
    [77] Gao Z, Zhang Y, Song N, et al. Towards flexible lithium-sulfur battery from natural cotton textile[J]. Electrochimica Acta,2017,246:507-516.
    [78] Cheng P, Li T, Yu H, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J]. Journal of Physical Chemistry C,2016,120(4):2079-2086. doi: 10.1021/acs.jpcc.5b11280
    [79] Wang C, Huang J, Qi H, et al. Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage[J]. Journal of Power Sources,2017,358:85-92. doi: 10.1016/j.jpowsour.2017.05.011
    [80] Li Y, Wang G, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy,2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038
    [81] Wang K, Yan R, Zhao N, et al. Bio-inspired hollow activated carbon microtubes derived from willow catkins for supercapacitors with high volumetric performance[J]. Materials Letters,2016,174:249-252. doi: 10.1016/j.matlet.2016.03.063
    [82] Wei Y. Activated carbon microtubes prepared from plant biomass (Poplar Catkins) and their application for supercapacitors[J]. Chemistry Letters,2014,43(2):216-218. doi: 10.1246/cl.130837
    [83] Cai W, Li G, Luo D, et al. The dual‐play of 3D conductive scaffold embedded with Co, N codoped hollow polyhedra toward high‐performance Li–S Full cell[J]. Advanced Energy Materials,2018,8(34):1802561. doi: 10.1002/aenm.201802561
    [84] Wei L, Qin A, Guo S, et al. Research progress on the preparation of two-dimensional carbon materials based on biomass[J]. Journal of Functional Materials,2019,50(1):1067-1074. doi: 10.3969/j.issn.1001-9731.2019.01.009
    [85] Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [86] Xiao G, Cai W, Zhu L, et al. N-Doped carbon nanotubes decorated with Fe/Ni sites to stabilize lithium metal anodes[J]. Inorganic Chemistry Frontiers,2020,7(15):2747-2752. doi: 10.1039/D0QI00501K
    [87] Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie,2017,56(27):7764-7768. doi: 10.1002/anie.201702099
    [88] Ojha K, Kumar B, Ganguli A K. Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors[J]. Journal of Chemical Sciences,2017,129(3):397-404. doi: 10.1007/s12039-017-1248-8
    [89] Liu H, Chen X, Cheng X B, et al. Uniform Lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries[J]. Small Methods,2018,3(9):1800354. doi: DOI.org/10.1002/smtd.201800354
    [90] Chen F, Yang J, Bai T, et al. Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries[J]. Journal of Electroanalytical Chemistry,2016,768:18-26. doi: 10.1016/j.jelechem.2016.02.035
    [91] Zhou X, Chen F, Bai T, et al. Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries[J]. Green Chemistry,2016,18(7):2078-2088. doi: 10.1039/C5GC02122G
    [92] Wang H, Xu Z W, Kohandehghan A, et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy[J]. ACS Nano,2013,7(6):5131-5141. doi: 10.1021/nn400731g
    [93] Sun L, Tian C, Li M, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors[J]. Journal of Materials Chemistry A,2013,1(21):6462-6470. doi: 10.1039/c3ta10897j
    [94] Tian W Q, Gao Q M, Tan Y L, et al. Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor[J]. Carbon,2017,119:287-295. doi: 10.1016/j.carbon.2017.04.050
    [95] Kannan A G, Samuthirapandian A, Kim D-W. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance[J]. Journal of Power Sources,2017,337:65-72. doi: 10.1016/j.jpowsour.2016.10.109
    [96] Wang J, Yang Z, Pan F, et al. Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries[J]. RSC Advances,2015,5(68):55136-55142. doi: 10.1039/C5RA08148C
    [97] Zhang X, Liu R R, Zang Y P, et al. Shrimp-shell derived carbon nanodots as precursors to fabricate Fe, N-doped porous graphitic carbon electrocatalysts for efficient oxygen reduction in zinc-air batteries[J]. Inorganic Chemistry Frontiers,2016,3(7):910-918. doi: 10.1039/C6QI00059B
    [98] Tao X Y, Wu R, Xia Y, et al. Biotemplated fabrication of Sn@C anode materials based on the unique metal biosorption behavior of microalgae[J]. ACS Applied Materials & Interfaces,2014,6(5):3696-3702. doi: DOI.org/10.1021/am500020e
    [99] Puig A, Perez-Munuera I, Carcel J A, et al. Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L. ) during conventional and ultrasonically assisted convective drying[J]. Food and Bioproducts Processing,2012,90(4):624-632. doi: 10.1016/j.fbp.2012.07.001
    [100] Jin C B, Sheng O W, Luo J M, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy,2017,37:177-186. doi: 10.1016/j.nanoen.2017.05.015
    [101] Jin C B, Sheng O W, Zhang W K, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Materials,2018,15:218-225. doi: 10.1016/j.ensm.2018.04.001
    [102] Bi Z, Kong Q, Cao Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review[J]. Journal of Materials Chemistry A,2019,7(27):16028-16045. doi: 10.1039/C9TA04436A
    [103] Seo J K, Cho H-M, Takahara K, et al. Revisiting the conversion reaction voltage and the reversibility of the CuF2 electrode in Li-ion batteries[J]. Nano Research,2017,10(12):4232-4244. doi: 10.1007/s12274-016-1365-6
    [104] Tian X, Ma H, Li Z, et al. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors[J]. Journal of Power Sources,2017,359:88-96. doi: 10.1016/j.jpowsour.2017.05.054
    [105] Zhu G, Ma L, Lv H, et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors[J]. Nanoscale,2017,9(3):1237-1243. doi: 10.1039/C6NR08139H
    [106] Fan Y, Liu P, Zhu B, et al. Microporous carbon derived from acacia gum with tuned porosity for high-performance electrochemical capacitors[J]. International Journal of Hydrogen Energy,2015,40(18):6188-6196. doi: 10.1016/j.ijhydene.2015.03.090
    [107] Sun F, Gao J, Zhu Y, et al. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode[J]. Scientific Reports,2017,7(1):40990. doi: 10.1038/srep40990
    [108] Liang T, Chen C, Li X, et al. Popcorn-derived porous carbon for energy storage and CO2 capture[J]. Langmuir,2016,32(32):8042-8049. doi: 10.1021/acs.langmuir.6b01953
    [109] Liu C, Han G, Chang Y, et al. Properties of porous carbon derived from cornstalk core in high-performance electrochemical capacitors[J]. ChemElectroChem,2016,3(2):323-331. doi: 10.1002/celc.201500376
    [110] Qiu X, Wang L, Zhu H, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon[J]. Nanoscale,2017,9(22):7408-7418. doi: 10.1039/C7NR02628E
    [111] Song H, Chen X, Zheng G, et al. Dendrite-free composite Li anode assisted by Ag nanoparticles in a wood-derived carbon frame[J]. ACS Applied Materials & interfaces,2019,11(20):18361-18367. doi: DOI.org/10.1021/acsami.9b01694
    [112] Zhang Y, Luo W, Wang C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences,2017,114(14):3584-3589. doi: 10.1073/pnas.1618871114
    [113] Wang H S, Lin D C, Xie J, et al. An interconnected channel‐like framework as host for lithium metal composite anodes[J]. Advanced Energy Materials,2019,9(7):1802720. doi: 10.1002/aenm.201802720
    [114] Jin C B, Sheng O W, Lu Y, et al. Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA/cm2[J]. Nano Energy,2018,45:203-209. doi: 10.1016/j.nanoen.2017.12.055
    [115] Zhang R, Shen X, Wang J, et al. Plating of Li ions in 3D structured lithium metal anodes[J]. CIESC Journal,2020,71(6):2688-2695. doi: 10.11949/0438-1157.20200120
    [116] Shi F, Pei A, Vailionis A, et al. Strong texturing of lithium metal in batteries[J]. Proceedings of the National Academy of Sciences,2017,114(46):12138-12143. doi: 10.1073/pnas.1708224114
    [117] Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances,2019,5(2):eaau7728. doi: 10.1126/sciadv.aau7728
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  209
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 修回日期:  2022-06-07
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回