留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ablation behaviour and mechanical performance of ZrB2-ZrC-SiC modified carbon/carbon composites prepared by vacuum filtration combined with reactive melt infiltration

ZHANG Jia-ping SU Xiao-xuan LI Xin-gang WANG Run-ning FU Qian-gang

张佳平, 苏晓宣, 李鑫港, 王润宁, 付前刚. 真空抽滤结合反应熔渗法制备ZrB2-ZrC-SiC改性碳/碳复合材料的力学性能及烧蚀行为. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60841-3
引用本文: 张佳平, 苏晓宣, 李鑫港, 王润宁, 付前刚. 真空抽滤结合反应熔渗法制备ZrB2-ZrC-SiC改性碳/碳复合材料的力学性能及烧蚀行为. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60841-3
ZHANG Jia-ping, SU Xiao-xuan, LI Xin-gang, WANG Run-ning, FU Qian-gang. Ablation behaviour and mechanical performance of ZrB2-ZrC-SiC modified carbon/carbon composites prepared by vacuum filtration combined with reactive melt infiltration. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60841-3
Citation: ZHANG Jia-ping, SU Xiao-xuan, LI Xin-gang, WANG Run-ning, FU Qian-gang. Ablation behaviour and mechanical performance of ZrB2-ZrC-SiC modified carbon/carbon composites prepared by vacuum filtration combined with reactive melt infiltration. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60841-3

真空抽滤结合反应熔渗法制备ZrB2-ZrC-SiC改性碳/碳复合材料的力学性能及烧蚀行为

doi: 10.1016/S1872-5805(24)60841-3
基金项目: 国家自然科学基金(52002321, 52272044); 基础科学中心燃气轮机项目(P2021-A-IV-003-001); 先进陶瓷纤维及复合材料科技基金(6142907220302); 河南省科技研究发展计划联合基金(Grant No. 225200810002); 国家科技重大专项(J2022-VI-0011-0042); 基础研究项目(JCKY2021607B035)
详细信息
    通讯作者:

    张佳平, 博士生导师. E-mail: zhangjiaping@nwpu.edu.cn

  • 中图分类号: TB33

Ablation behaviour and mechanical performance of ZrB2-ZrC-SiC modified carbon/carbon composites prepared by vacuum filtration combined with reactive melt infiltration

Funds: This work was supported by the National Natural Science Foundation of China (52002321, 52272044), the Science Center for Gas Turbine Project (P2021-A-IV-003-001), the fund of Science and Technology on Advanced Ceramic Fibers and Composites Laboratory (6142907220302), the Joint Fund of Henan Province Science and Technology R&D Program (225200810002), National Science and Technology Major Project (J2022-VI-0011-0042) and National Basic Scientific Research (JCKY2021607B035)
More Information
  • 摘要: 采用真空抽滤ZrB2作为反应熔渗ZrSi2的补充,成功地将ZrB2-ZrC-SiC引入到C/C基体中,使引入的陶瓷相含量增加且分布均匀。与仅通过反应熔渗制备的C/C-ZrC-SiC相比,C/C-ZrB2-ZrC-SiC复合材料的质量烧蚀率和线性烧蚀率分别降低了68.9%和29.7%。烧蚀性能提高的原因在于B2O3的挥发带走部分热量,同时能够形成更多均匀分布的ZrO2,促进ZrO2-SiO2连续保护层的形成,从而有效地抵抗机械剥蚀,阻碍氧气的渗入。
  • Figure  1.  Vacuum infiltration device and its partial enlarged view

    Figure  2.  Schematic diagram of ablation test

    Figure  3.  Visual appearances and phase compositions of the prepared composites: (a) CSZ, (b) CSZZ, (c) XRD patterns

    Figure  4.  Cross-section morphologies of composites: (a) CSZ, (b) CSZZ

    Figure  5.  Enlarged views of the cross-section morphologies of composites: (a, d) C/C-ZrB2; (b, e) CSZ; (c, f) CSZZ

    Figure  6.  Flexural properties of C/C, CSZ and CSZZ

    Figure  7.  Visual appearances of the composites after ablation: (a) CSZ, (b) CSZZ

    Figure  8.  Surface temperature versus time curves of CSZ and CSZZ during ablation

    Figure  9.  XRD pattern of CSZ and CSZZ after ablation.

    Figure  10.  Central region microstructure of the composites after ablation: (a, c, e) CSZ (c, e: the enlarged view of area Ⅰ, Ⅱ); (b, d, f) CSZZ (d, f: the enlarged view of area Ⅲ, Ⅳ)

    Figure  11.  Transition region microstructure and EDS analysis of the composites after ablation: (a)(c)(e) CSZ, (c, e: the enlarged view of Area Ⅰ, Ⅱ); (b)(d)(f) CSZZ, (d, f: the enlarged view of Area Ⅲ, Ⅳ); (g) EDS of Spot 1, (h) EDS of Spot 2

    Figure  12.  Cross-section micrograph at the central regions of CSZ and CSZZ after ablation: (a) CSZ; (b) CSZZ

    Figure  13.  Schematic diagram of ablation mechanism for CSZ and CSZZ

    Table  1.   Density, phase content and porosity of the composites

    SampleDensity/(g/cm3)Carbon content/%SiC content/%ZrC content/%ZrB2 content/%Porosity/%
    CSZ2.6635.2%28.3%36.5%10.19%
    CSZZ3.0629.4%25.5%32.9%12.2%11.68%
    下载: 导出CSV

    Table  2.   Ablation properties compared with other studies (Abbreviation in the table: chemical vapor infiltration (CVI)

    SampleMethodsDensity/(g/cm3)Porosity/%Linear ablation rate/(μm/s)Mass ablation rate/(mg/s)Ref.
    C/C-ZrC-ZrB2-SiCCVI+PIP1.9813.020.50±0.012.21±0.60[37]
    C/C-ZrC-ZrB2-SiCRMI+SI−0.650.69[38]
    C/C-ZrC-SiCRMI2.9823.45−5.30±0.500.70[39]
    C/C-SiC-ZrCRMI2.6610.19−1.720.61This work
    C/C-SiC-ZrB2-ZrCVacuum filtration+RMI3.0611.68−1.210.19This work
    下载: 导出CSV
  • [1] Fedele A, Omar S, Cantoni S, et al. Precise re-entry and landing of propellantless spacecraft[J]. Advances in Space Research,2021,68:4336-58. doi: 10.1016/j.asr.2021.09.029
    [2] Savino R, Fumo M D, Paterna D, et al. Arc-jet testing of ultra-high-temperature-ceramics[J]. Aerospace Science and Technology,2010,14:178-87. doi: 10.1016/j.ast.2009.12.004
    [3] Sciti D, Zoli L, Reimer T, et al. A systematic approach for horizontal and vertical scale up of sintered ultra-high temperature ceramic matrix composites for aerospace–advances and perspectives[J]. Composites Part B: Engineering, 2022, 234.
    [4] Fu Q G, Zhang P, Zhuang L, et al. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples[J]. Journal of Materials Science & Technology,2022,96:31-68.
    [5] Li B L, Guo J G, Xun B, et al. Preparation, microstructure and properties of three-dimensional carbon/carbon composites with high thermal conductivity[J]. New Carbon Materials,2020,35:567-75. doi: 10.1016/S1872-5805(20)60510-8
    [6] Li J C, Zhang Y L, Lv J S, et al. Sealing role of Ti-rich phase in HfC-ZrC-TiC coating for C/C composites during ablation above 2100°C[J]. Corrosion Science, 2022, 205.
    [7] Tian T, Sun W, Xiong X, et al. Novel one-step formed composite reinforcement of "Spider web like" SiCnw networks and "Z-pins like" SiC rods for ablation resistance improvement of C/C-ZrC-SiC[J]. Journal of the European Ceramic Society,2022,42:786-800. doi: 10.1016/j.jeurceramsoc.2021.10.051
    [8] Yao J J, Pang S Y, Hu C L, et al. Mechanical, oxidation and ablation properties of C/(C-SiC)CVI-(ZrC-SiC)PIP composites[J]. Corrosion Science, 2020, 162.
    [9] Ren X R, Wang W H, Chen P, et al. Investigations of TaB2 on oxidation-inhibition property and mechanism of Si-based coatings in aerobic environment with broad temperature region for carbon materials[J]. Journal of the European Ceramic Society,2019,39:4554-64. doi: 10.1016/j.jeurceramsoc.2019.07.020
    [10] Xu L, Cheng J, Li X C, et al. Preparation of carbon/carbon‐ultra high temperature ceramics composites with ultra high temperature ceramics coating[J]. Journal of American Ceramic Society,2018,101:3830-36. doi: 10.1111/jace.15565
    [11] Tong M D, Fu Q G, Yao S T, et al. A novel Hf-Si-O wire drawing phenomenon after ablation of SiCnws/HfC-SiC coating on C/C composites[J]. Journal of Materiomics,2020,6:263-73. doi: 10.1016/j.jmat.2020.03.001
    [12] Hui W H, Bao F T, Wei X G, et al. Ablation performance of a 4D-braided C/C composite in a parameter-variable channel of a Laval nozzle in a solid rocket motor[J]. New Carbon Materials,2017,32:365-73. doi: 10.1016/S1872-5805(17)60128-8
    [13] Servadei F, Zoli L, Galizia P, et al. Preparation of UHTCMCs by hybrid processes coupling polymer infiltration and pyrolysis with hot pressing and vice versa[J]. Journal of the European Ceramic Society,2022,42:2118-26. doi: 10.1016/j.jeurceramsoc.2021.12.039
    [14] Ni D, Cheng Y, Zhang J, et al. Advances in ultra-high temperature ceramics, composites and coatings[J]. Journal of Advanced Ceramics,2021,11:1-56.
    [15] D’Angio’ A, Zou J, Binner J, et al. Mechanical properties and grain orientation evolution of zirconium diboride-zirconium carbide ceramics[J]. Journal of the European Ceramic Society,2018,38:391-402. doi: 10.1016/j.jeurceramsoc.2017.09.013
    [16] Paul A, Venugopal S, Binner J G P, et al. UHTC-carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation[J]. Journal of the European Ceramic Society,2013,33:423-32. doi: 10.1016/j.jeurceramsoc.2012.08.018
    [17] Zhang J P, Fu Q G, Tong M D, et al. Microstructure, ablation behavior and thermal retardant ability of C/C-HfB2 composites prepared by precursor infiltration pyrolysis combined with chemical vapor infiltration[J]. Journal of Alloys and Compounds,2018,742:123-29. doi: 10.1016/j.jallcom.2018.01.284
    [18] Binner J, Porter M, Baker B, et al. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs – a review[J]. International Materials Reviews,2019,65:389-444.
    [19] Jin X C, Fan X L, Lu C S, et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites[J]. Journal of the European Ceramic Society,2018,38:1-28. doi: 10.1016/j.jeurceramsoc.2017.08.013
    [20] Cheng Y, Lyu Y, Xie Y, et al. Starting from essence to reveal the ablation behavior and mechanism of 3D PyC Cf/ZrC-SiC composite[J]. Corrosion Science,2022,201:110261. doi: 10.1016/j.corsci.2022.110261
    [21] Ren X R, Shi H L, Wang W H, et al. Influence of the ZrB2 content on the anti-oxidation ability of ZrB2-SiC coatings in aerobic environments with broad temperature range[J]. Journal of the European Ceramic Society,2020,40:203-11. doi: 10.1016/j.jeurceramsoc.2019.10.006
    [22] Zhang P, Fu Q G, Liu B, et al. Development of SiC-ZrC-based ultra-high temperature ceramic coatings via composite method of polymer precursor pyrolysis plus gaseous reactive infiltration[J]. Surface and Coatings Technology, 2022, 431.
    [23] Ran L P, Rao F, Peng K, et al. Preparation and properties of C/C-ZrB2-SiC composites by high-solid-loading slurry impregnation and polymer infiltration and pyrolysis (PIP)[J]. Transactions of Noferrous Metals of Society of China,2019,29:2141-50. doi: 10.1016/S1003-6326(19)65120-4
    [24] He L K, Sun Y H, Meng Q H, et al. Enhanced oxidation properties of ZrB2–SiC composite with short carbon fibers at 1600 °C[J]. Ceramics International,2021,47:15483-90. doi: 10.1016/j.ceramint.2021.02.114
    [25] Kim K S, Lee S H, Nguyen V Q, et al. Ablation characteristics of rocket nozzle using HfC-SiC refractory ceramic composite[J]. Acta Astronautica,2020,173:31-44. doi: 10.1016/j.actaastro.2020.03.050
    [26] Wang H H, Teng L, Kong J A, et al. Enhancing anti-oxidation and thermal-radiation performance of the repaired borosilicate glass coating on C/C composites by Sm-doping[J]. Journal of Materiomics,2022,8:417-26. doi: 10.1016/j.jmat.2021.07.005
    [27] Ren X R, Wang W G, Sun K, et al. Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering[J]. New Carbon Materials,2022,37:603-14. doi: 10.1016/S1872-5805(21)60060-4
    [28] Zhang J P, Qu J L, Fu Q G. Ablation behavior of nose-shaped HfB2-SiC modified carbon/carbon composites exposed to oxyacetylene torch[J]. Corrosion Science,2019,151:87-96. doi: 10.1016/j.corsci.2019.02.015
    [29] Wang R N, Li N, Zhang J P, et al. Ablation behavior of sharp leading-edge C/C-ZrC-SiC composites using 3000°Coxyacetylene torch[J]. Corrosion Science,2022,206:110551. doi: 10.1016/j.corsci.2022.110551
    [30] Chen X, Ni D, Kan Y, et al. Reaction mechanism and microstructure development of ZrSi2 melt-infiltrated Cf/SiC-ZrC-ZrB2 composites: The influence of preform pore structures[J]. Journal of Materiomics,2018,4:266-75. doi: 10.1016/j.jmat.2018.05.005
    [31] Jiang J M, Wang S, Li W, et al. Preparation of 3D Cf/ZrC–SiC composites by joint processes of PIP and RMI[J]. Materials Science & Engineering A,2014,607:334-40.
    [32] Tang Z X, Yi M Z, Xiang Q L, et al. Mechanical and ablation properties of a C/C-HfB2-SiC composite prepared by high-solid-loading slurry impregnation combined with precursor infiltration and pyrolysis[J]. Journal of the European Ceramic Society,2021,41:6160-70. doi: 10.1016/j.jeurceramsoc.2021.06.055
    [33] Wu Q, Bai H H, Yang X, et al. Significantly increasing the interfacial adhesion of carbon fiber composites via constructing a synergistic hydrogen bonding network by vacuum filtration[J]. Composites Part B: Engineering, 2021, 225.
    [34] Wu Q, Bai H H, Gao A J, et al. High-density grafting of carbon nanotube/carbon nanofiber hybrid on carbon fiber surface by vacuum filtration for effective interfacial reinforcement of its epoxy composites[J]. Composites Science and Technology, 2022, 225.
    [35] Feng W, Zhang L T, Liu Y S, et al. Fabrication of SiCf-CNTs/SiC composites with high thermal conductivity by vacuum filtration combined with CVI[J]. Materials Science & Engineering A,2016,662:506-10.
    [36] Liu Y, Fu Q G, Wang B B, et al. The ablation behavior and mechanical property of C/C-SiC-ZrB2 composites fabricated by reactive melt infiltration[J]. Ceramics International,2017,43:6138-47. doi: 10.1016/j.ceramint.2017.02.008
    [37] Zhang M Y, Li K Z, Shi X H, et al. Effects of SiC interphase on the mechanical and ablation properties of C/C-ZrC-ZrB2-SiC composites prepared by precursor infiltration and pyrolysis[J]. Materials & design,2017,122:322-329.
    [38] B Z Z A, A K L, A W L, et al. Cyclic ablation behavior of C/C-ZrC-SiC-ZrB2 composites under oxyacetylene torch with two heat fluxes at the temperatures above 2000 °C[J]. Corrosion Science, 2021.
    [39] Wang R N, Zhang J P, Liu B, et al. Ablation of advanced C/C-ZrC-SiC leading edge composites[J]. Corrosion Science, 226(2024), 111648.
    [40] Wang P, Li S J, Wei C C, et al. Microstructure and ablation properties of SiC/ZrB2-SiC/ZrB2/SiC multilayer coating on graphite[J]. Journal of Alloys and Compounds,2019,781:26-36. doi: 10.1016/j.jallcom.2018.12.045
    [41] Zhang D Y, Yu H Y, Wang A Z, et al. Ablation behavior and mechanisms of 3D Cf/ZrB2-SiC composite applied in long-term temperature up to 2400°C[J]. Corrosion Science,2021,190:109706. doi: 10.1016/j.corsci.2021.109706
    [42] Zhuang L, Fu Q G, Liu T Y. Ablation resistance of wedge-shaped C/C-ZrB2-ZrC-SiC composites exposed to an oxyacetylene torch[J]. Corrosion Science,2016,112:462-70. doi: 10.1016/j.corsci.2016.08.010
    [43] Hu C L, Pang S Y, Tang S F, et al. Ablation and mechanical behavior of a sandwich-structured composite with an inner layer of Cf/SiC between two outer layers of Cf/SiC–ZrB2–ZrC[J]. Corrosion Science,2014,80:154-63. doi: 10.1016/j.corsci.2013.11.019
    [44] Wang C, Li K Z, Lu Y, et al. Effect of ablative angles on the ablation behaviors of ZrB2-SiC modified carbon/carbon composites[J]. Journal of Alloys and Compounds,2018,745:569-78. doi: 10.1016/j.jallcom.2018.02.228
    [45] Zhang P, Fu Q, Cheng C, et al. Microstructure evolution of in-situ SiC-HfB2-Si ternary coating and its corrosion behaviors at ultra-high temperatures[J]. Journal of the European Ceramic Society,2021,41(13):6223-6237. doi: 10.1016/j.jeurceramsoc.2021.05.058
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  85
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 录用日期:  2024-01-08
  • 修回日期:  2024-01-06
  • 网络出版日期:  2024-01-15

目录

    /

    返回文章
    返回