留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/聚酰亚胺炭膜的制备及其气体分离性能

侯旻辰 李琳 鲁云华 冉旭 宋成文 王春雷 梁长海 王同华

侯旻辰, 李琳, 鲁云华, 冉旭, 宋成文, 王春雷, 梁长海, 王同华. 石墨烯/聚酰亚胺炭膜的制备及其气体分离性能[J]. 新型炭材料, 2020, 35(6): 762-768. doi: 10.19869/j.ncm.1007-8827.20180067
引用本文: 侯旻辰, 李琳, 鲁云华, 冉旭, 宋成文, 王春雷, 梁长海, 王同华. 石墨烯/聚酰亚胺炭膜的制备及其气体分离性能[J]. 新型炭材料, 2020, 35(6): 762-768. doi: 10.19869/j.ncm.1007-8827.20180067
HOU Min-chen, LI Lin, LU Yun-hua, RAN Xu, SONG Cheng-Wen, WANG Chun-lei, LIANG Chang-hai, WANG Tong-hua. The preparation and gas separation performance of graphene/polyimide carbon membranes[J]. NEW CARBON MATERIALS, 2020, 35(6): 762-768. doi: 10.19869/j.ncm.1007-8827.20180067
Citation: HOU Min-chen, LI Lin, LU Yun-hua, RAN Xu, SONG Cheng-Wen, WANG Chun-lei, LIANG Chang-hai, WANG Tong-hua. The preparation and gas separation performance of graphene/polyimide carbon membranes[J]. NEW CARBON MATERIALS, 2020, 35(6): 762-768. doi: 10.19869/j.ncm.1007-8827.20180067

石墨烯/聚酰亚胺炭膜的制备及其气体分离性能

doi: 10.19869/j.ncm.1007-8827.20180067
基金项目: 国家重点研发计划(2017YFB0603403);国家自然科学基金(21476034,21506020,21676044,21576035,21978034);中央高校基本科研业务费(DUT2018TB02);大连市科技创新基金(2018J12GX031).
详细信息
    作者简介:

    侯旻辰,硕士研究生.E-mail:hmc19921209@163.com

    通讯作者:

    李琳,副教授.E-mail:lindalee121@126.com;王同华,教授.E-mail:wangth@dlut.edu.cn

  • 中图分类号: TB383

The preparation and gas separation performance of graphene/polyimide carbon membranes

Funds: National Key Research and Development Program of China (2017YFB0603403);National Natural Science Foundation of China (21476034,21506020,21676044,21576035,21978034),Fundamental Research Funds for the Central Universities(DUT2018TB02),Innovation Funds for Dalian Science and Technology(2018J12GX031).
  • 摘要: 以9,9-双(4-氨基苯基芴)(FDA)、9,9-双(3-氨基-4-羟基苯基)芴(BisAHPF)、六氟二酐(6FDA)为单体,二维片层氧化石墨烯(GO)纳米炭晶为孔尺度调节剂,采用原位合成法制备GO/聚酰亚胺聚合物,经制膜及高温炭化制备了石墨烯/聚酰亚胺气体分离炭膜。借助于FTIR、XPS、XRD、TGA、氮吸附及气体渗透等表征手段对GO及炭膜的结构与性能进行表征;探讨了GO添加量对石墨烯/聚酰亚胺炭膜的结构与性能的影响。结果表明,原位引入片状GO纳米炭晶,在改善了聚合物膜热稳定性的同时,显著提高了石墨烯/聚酰亚胺炭膜的总孔体积,特别是尺度小于0.6 nm的极微孔孔体积与数量;使石墨烯/聚酰亚胺炭膜在保持高气体渗透性条件下,明显地提高气体分离选择性;增加GO添加量,可进一步提升石墨烯/聚酰亚胺炭膜的气体分离选择性。当GO添加量为0.5 wt.%时,石墨烯/聚酰亚胺炭膜的CO2渗透系数为8 760 Barrer,比纯炭膜仅降低了6%;CO2/N2、CO2/CH4分离选择性分别为52、53,分别提高32%、39%。
  • Kamath M G, Fu S, Itta A K, et al. 6FDA-DETDA:DABE polyimide-derived carbon molecular sieve hollow fiber membranes:Circumventing unusual aging phenomena[J]. Journey of Membrane Science, 2018, 546:197-205.
    Koros W J, Fleming G K. Membrane-based gas separation[J]. Journal of Membrane Science, 1993, 83:1-80.
    Robeson L M. The upper bound revisited[J]. Journey of Membrane Science, 2008, 320:390-400.
    L Li, Wang T H. Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer[J]. Journey of Membrane Science, 2014, 450:469-477.
    Carta M, Malpass-Evans R, Croad M, et al. An Efficient polymer molecular sieve for membrane gas separations[J]. Science, 2013, 339(6117):303-307.
    Bernardo P, Drioli E, Golemme G. Membrane gas separation:A review/state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10):4638-4663.
    Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3):289.
    Li L, Wang T H, Liu Q L, et al. A high CO2 perrmselective mesoporous silica/carbon composite membrane for CO2 separation[J]. Carbon, 2012, 50(14):5186-5195.
    Fu S, Sanders E S, Koros W J. Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides:Entropic selectivity evaluation[J]. Carbon, 2015, 95:995-1006.
    Rungta M, Wenz G B, Zhang C, et al. Carbon molecular sieve structure development and membrane performance relationships[J]. Carbon, 2017, 115:237-248.
    Hamm J B S, Ambrosi A, Griebeler J G, et al. Recent advances in the development of supported carbon membranes for gas separation[J]. International Journal of Hydrogen Energy, 2017, 42:24830-24845.
    Fu S, Sanders E S, Kulkarni S S, et al. Carbon molecular sieve membrane structure-property relationships for four novel 6FDA based polyimide precursors[J]. Journal of Membrane Science, 2015, 487:60-73.
    宋晶, 李琳, 徐瑞松,等. CO2捕集炭膜的前驱体结构设计及性能[J]. 高等学校化学学报, 2017, 38(10):1850-1856. (SONG Jing, LI Lin, LU Yunhua, et al. Precursors structural design and property of carbon membrane for CO2 capture[J]. Chemical Journal of Chinese Universities, 2017, 38(10):1850-1856.)
    宋成文, 姜大伟, 李琳,等. PMDA-ODA型聚酰亚胺炭/碳纳米管杂化膜的制备及气体分离性能研究[J]. 无机材料学报, 2012, 27(9):923-927. (SONG Cheng-Wen, JIANG Da-Wei, LI Lin, et al. Preparation and Gas Separation Properties of Carbon/Carbon Nanotubes Hybrid Membranes Derived from PMDA-ODA Polyimide[J]. Journal of Inorganic Materials, 2012, 27(9):923-927.)
    Moore T T, Mahajan R, Koros W J, et al. Hybrid membrane materials comprising organic polymers with rigid dispersed phases[J].AIChe Journal, 2004, 50:311-321.
    赵选英,王同华,曹义鸣,等. Fe/C杂化炭膜的制备及其气体分离性能[J]. 化工学报,2009, 60(9):2233-2235(ZHAO Xuanying,WANG Tonghua,LI Lin,et al. Fabrication of Fe/C hybrid carbon membranes for gas separation[J]. CIESC Journal, 2009, 60(9):2232-2236.)
    Li L, Song C W, Jiang D W, et al. Preparation and enhanced gas separation performance of carbon/carbon nanotubes (C/CNTs) hybrid membranes[J]. Separation and Purification Technology, 2017, 188:73-80.
    Li L, Wang C L, Wang N, Wang T H, et al. The preparation and gas separation properties of zeolite/carbon hybrid membranes[J]. Journal of Materials Science, 2015, 50(6):2561-2670.
    JING Guo-jian, YE Zheng-mao, LI Cheng, et al. A ball milling strategy to disperse graphene oxide in cement composites[J]. New Carbon Materials, 2019, 34(6):569-577.
    Dong G Y, Hou J W, Zhang Y T, et al. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes[J]. Journey of Membrane Science, 2016, 520:860-868.
    Shen J, Liu G P, Jin W Q, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture[J], Angewandte Chemie International Edition, 2015, 54:578-582.
    Lu Y H, Hao J C, Li L, et al. Preparation and gas transport properties of thermally induced rigid membranes of copolyimide containing cardo moieties[J]. Reactive and Functional Polymers, 2017, 119:134-144.
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
    GAO Xiang-li, LIU Cui-xian, HAN Gao-yi, et al. Reduced graphene oxide hydrogels prepared in the presence of phenol for high-performance electrochemical capacitors[J]. New Carbon Materials, 2019, 34(5):403-416.
    孙美悦, 李琳, 王同华, 等. P25杂化炭膜的制备及其气体分离性能[J]. 无机材料学报, 2013, 28(5):486-490. (Mei-Yue SUN, Lin LI, Ping-Ping ZHANG, et al. Preparation and gas separation performance of P25 hybrid carbon membranes[J]. Journal of Inorganic Materials, 2013, 28(5):485-489.)
    Lu Y, Hao J, Xiao G, et al. Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films[J]. Applied Surface Science, 2017, 422:710-719.
  • 加载中
图(1)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  62
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-17
  • 修回日期:  2019-11-06
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回