Volume 37 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
GUAN Lu, HU Han, TENG Xiao-ling, ZHU Yi-fan, ZHANG Yun-long, CHAO Hui-xia, YANG Hao, WANG Xiao-shan, WU Ming-bo. Templating synthesis of porous carbons for energy-related applications: A review. New Carbon Mater., 2022, 37(1): 25-45. doi: 10.1016/S1872-5805(22)60574-2
Citation: GUAN Lu, HU Han, TENG Xiao-ling, ZHU Yi-fan, ZHANG Yun-long, CHAO Hui-xia, YANG Hao, WANG Xiao-shan, WU Ming-bo. Templating synthesis of porous carbons for energy-related applications: A review. New Carbon Mater., 2022, 37(1): 25-45. doi: 10.1016/S1872-5805(22)60574-2

Templating synthesis of porous carbons for energy-related applications: A review

doi: 10.1016/S1872-5805(22)60574-2
Funds:  This work was financially supported by National Natural Science Foundation of China (22138013, 22179145), Shandong Provincial Natural Science Foundation (ZR2020ZD08), and the startup support grant from China University of Petroleum (East China)
More Information
  • Author Bio:

    关 露,博士生. E-mail:534890560@qq.com

  • Corresponding author: HU Han, Ph. D, Professor. E-mail: hhu@upc.edu.cn; WU Ming-bo, Ph. D, Professor. E-mail: wumb@upc.edu.cn
  • Received Date: 2021-09-26
  • Rev Recd Date: 2021-11-23
  • Available Online: 2021-12-17
  • Publish Date: 2022-02-01
  • Because of their large specific surface area, high chemical and thermal stability and good electrical conductivity, porous carbons have found wide applications in the fields of electrochemical energy storage and conversion. Their performance hinges heavily on their structure, making the structural control of porous carbons a research frontier in their development. In addition to the straightforward hard-templating processes, soft templating synthesis is considered another appealing strategy for the precise engineering of porous carbons. We review recent progress on synthesizing porous carbon materials for energy storage and conversion using templating processes. First, the rise of this method of preparing porous carbons is outlined by comparing it with the traditional hard templating methods. Soft templating methods are then classified into top-down, state-change and bottom-up templates based on the template formation processes. The performance of these materials in electrochemical energy storage and conversion is presented, highlighting the advantages of this synthesis method. Finally, possible obstacles and future prospects are provided.
  • loading
  • [1]
    Wang G, Yu M, Feng X. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews,2021,50(4):2388-2443. doi: 10.1039/D0CS00187B
    [2]
    Liu H, Liu X, Li W, et al. Porous carbon composites for next generation rechargeable lithium batteries[J]. Advanced Energy Materials,2017,7(24):1700283. doi: 10.1002/aenm.201700283
    [3]
    Dai L, Chang D W, Baek J B, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small,2012,8(8):1130-1166. doi: 10.1002/smll.201101594
    [4]
    Yang Z, Ren J, Zhang Z, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chemical Reviews,2015,115(11):5159-5223. doi: 10.1021/cr5006217
    [5]
    Jiang H, Lee P S, Li C. 3D carbon based nanostructures for advanced supercapacitors[J]. Energy & Environmental Science,2013,6(1):41-53 DOI: 10.1039/c2ee23284g .
    [6]
    Li X, Zheng S, Jin L, et al. Metal-organic framework-derived carbons for battery applications[J]. Advanced Energy Materials,2018,8(23):1800716. doi: 10.1002/aenm.201800716
    [7]
    Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [8]
    Liang C, Li Z, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angewandte Chemie, International Edition in English,2008,47(20):3696-3717. doi: 10.1002/anie.200702046
    [9]
    Shao M, Li C, Li T, et al. Pushing the energy output and cycling lifespan of potassium‐ion capacitor to high level through metal–organic framework derived porous carbon microsheets anode[J]. Advanced Functional Materials,2020,30(51):2006561. doi: 10.1002/adfm.202006561
    [10]
    Wei F, Zhang H F, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-139. doi: 10.1016/S1872-5805(19)60006-5
    [11]
    Shang M, Zhang J, Liu X, et al. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors[J]. Applied Surface Science,2021,542(15):148697. doi: 10.1016/j.apsusc.2020.148697
    [12]
    Wang H G, Wu Z, Meng F L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. ChemSusChem,2013,6(1):56-60. doi: 10.1002/cssc.201200680
    [13]
    Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry,2012,22(45):23710. doi: 10.1039/c2jm34066f
    [14]
    Dutta S, Bhaumik A, Wu K C W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications[J]. Energy & Environmental Science,2014,7(11):3574-3592. doi: 10.1039/c4ee01075b
    [15]
    Kyotani T. Synthesis of various types of nano carbons using the template technique[J]. Bulletin of the Chemical Society of Japan,2006,79(9):1322-1337. doi: 10.1246/bcsj.79.1322
    [16]
    Nishihara H, Kyotani T. Templated nanocarbons for energy storage[J]. Advanced Materials,2012,24(33):4473-4498. doi: 10.1002/adma.201201715
    [17]
    Zeng S, Liu S, Qi Y, et al. Facile synthesis of hierarchically porous carbonaceous materials derived from olefin/aldehyde precursors using silica as templates[J]. RSC Advances,2018,8(21):11462-11468. doi: 10.1039/C8RA01270A
    [18]
    Liu J, Wickramaratne N P, Qiao S Z, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nature Materials,2015,14(8):763-774. doi: 10.1038/nmat4317
    [19]
    Jache B, Neumann C, Becker J, et al. Towards commercial products by nanocasting: Characterization and lithium insertion properties of carbons with a macroporous, interconnected pore structure[J]. Journal of Materials Chemistry,2012,22(21):10787. doi: 10.1039/c2jm30787a
    [20]
    Li H, Kang W, Yu Y, et al. Synthesis of bamboo-structured carbon nanotubes and honeycomb carbons with long-cycle Li-storage performance by in situ generated zinc oxide[J]. Carbon,2012,50(13):4787-4793. doi: 10.1016/j.carbon.2012.06.001
    [21]
    Lou X W, Archer L A, Yang Z. Hollow micro-/nanostructures: Synthesis and applications[J]. Advanced Materials,2008,20(21):3987-4019. doi: 10.1002/adma.200800854
    [22]
    Niu S Z, Wu S D, Lu W, et al. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials,2017,32(4):289-296. doi: 10.1016/S1872-5805(17)60123-9
    [23]
    Shi J, Lin N, Lin H B, et al. A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction[J]. New Carbon Materials,2020,35(4):401-409. doi: 10.1016/S1872-5805(20)60497-8
    [24]
    Zhang W, Cheng R R, Bi H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials,2021,36(1):69-81. doi: 10.1016/S1872-5805(21)60005-7
    [25]
    Petkovich N D, Stein A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating[J]. Chemical Society Reviews,2013,42(9):3721-3739. doi: 10.1039/C2CS35308C
    [26]
    Schrettl S, Schulte B, Frauenrath H. Templating for hierarchical structure control in carbon materials[J]. Nanoscale,2016,8(45):18828-18848. doi: 10.1039/C6NR06695J
    [27]
    Drisko G L, Zelcer A, Caruso R A, et al. One-pot synthesis of silica monoliths with hierarchically porous structure[J]. Microporous and Mesoporous Materials,2012,148(1):137-144. doi: 10.1016/j.micromeso.2011.08.007
    [28]
    Bhandari N, Dua R, Estevez L, et al. A combined salt-hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance[J]. Carbon,2015,87:29-43. doi: 10.1016/j.carbon.2015.01.039
    [29]
    Li M, Yu C, Hu C, et al. Template-free synthesis of interconnected carbon nanosheets via cross-linking coupled with annealing for high-efficiency triiodide reduction[J]. Green Chemistry,2018,20(1):250-254. doi: 10.1039/C7GC02701J
    [30]
    Shang S, Yang X, Tao X M. Easy synthesis of carbon nanotubes with polypyrrole nanotubes as the carbon precursor[J]. Polymer,2009,50(13):2815-2818. doi: 10.1016/j.polymer.2009.04.041
    [31]
    Li C, Yin X, Chen L, et al. Porous carbon nanofibers derived from conducting polymer: Synthesis and application in lithium-ion batteries with high-rate capability[J]. Journal of Physical Chemistry C,2009,113(30):13438-13442. doi: 10.1021/jp901968v
    [32]
    Kamiyama A, Kubota K, Igarashi D, et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery[J]. Angewandte Chemie-International Edition,2021,60(10):5114-5120. doi: 10.1002/anie.202013951
    [33]
    Zhu S, Zhao N, Li J, et al. Hard-template synthesis of three-dimensional interconnected carbon networks: Rational design, hybridization and energy-related applications[J]. Nano Today,2019,29:100796. doi: 10.1016/j.nantod.2019.100796
    [34]
    Platschek B, Keilbach A, Bein T. Mesoporous structures confined in anodic alumina membranes[J]. Advanced Materials,2011,23(21):2395-2412. doi: 10.1002/adma.201002828
    [35]
    Chen Y, Chen H, Zeng D, et al. Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery[J]. ACS Nano,2010,4(10):6001-6013. doi: 10.1021/nn1015117
    [36]
    Yang B, Chen J, Lei S, et al. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors[J]. Advanced Energy Materials,2018,8(10):1702409. doi: 10.1002/aenm.201702409
    [37]
    Sevilla M, Fuertes A B. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors[J]. ACS Nano,2014,8(5):5069-5078. doi: 10.1021/nn501124h
    [38]
    Guan L, Pan L, Peng T, et al. Green and scalable synthesis of porous carbon nanosheet-assembled hierarchical architectures for robust capacitive energy harvesting[J]. Carbon,2019,152:537-544. doi: 10.1016/j.carbon.2019.06.059
    [39]
    Lyu Z, Xu D, Yang L, et al. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries[J]. Nano Energy,2015,12:657-665. doi: 10.1016/j.nanoen.2015.01.033
    [40]
    Fu F, Yang D, Zhang W, et al. Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors[J]. Chemical Engineering Journal,2020,392:123721. doi: 10.1016/j.cej.2019.123721
    [41]
    Shao J, Ma F, Wu G, et al. In-situ Mgo (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials[J]. Chemical Engineering Journal,2017,321:301-313. doi: 10.1016/j.cej.2017.03.092
    [42]
    Banhart F, Grobert N, Terrones M, et al. Metal atoms in carbon nanotubes and related nanoparticles[J]. International Journal of Modern Physics B,2001,15(31):4037-4069. doi: 10.1142/S0217979201007944
    [43]
    Perez Mayoral E, Calvino Casilda V, Soriano E. Metal-supported carbon-based materials: Opportunities and challenges in the synthesis of valuable products[J]. Catalysis Science & Technology,2016,6(5):1265-1291. doi: 10.1039/c5cy01437a
    [44]
    Wang L, Tian C, Wang H, et al. Mass production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization[J]. Journal of Physical Chemistry C,2010,114(19):8727-8733. doi: 10.1021/jp911292p
    [45]
    Zhang L, Wang J N, Niu J J. Synthesis of nanoporous carbons by an in situ template approach[J]. Journal of Materials Science,2007,42(10):3692-3694. doi: 10.1007/s10853-007-1711-x
    [46]
    Zhao J, Jiang Y, Fan H, et al. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship[J]. Advanced Materials,2017,29(11):1604569. doi: 10.1002/adma.201604569
    [47]
    Díez N, Fuertes A B, Sevilla M. Molten salt strategies towards carbon materials for energy storage and conversion[J]. Energy Storage Materials,2021,38:50-69. doi: 10.1016/j.ensm.2021.02.048
    [48]
    Long L, Jiang X, Liu J, et al. In situ template synthesis of hierarchical porous carbon used for high performance lithium–sulfur batteries[J]. RSC Advances,2018,8(9):4503-4513. doi: 10.1039/C7RA12978E
    [49]
    Hu H, Wu M. Heavy oil-derived carbon for energy storage applications[J]. Journal of Materials Chemistry A,2020,8(15):7066-7082. doi: 10.1039/D0TA00095G
    [50]
    Gao Y, Zhang Y, Li A, et al. Facile synthesis of high-surface area mesoporous biochar for energy storage via in-situ template strategy[J]. Materials Letters,2018,230:183-186. doi: 10.1016/j.matlet.2018.07.106
    [51]
    Wang Y, Wang Y, Liu J, et al. Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage[J]. Carbon,2017,122:344-351. doi: 10.1016/j.carbon.2017.06.086
    [52]
    Wang Y, Tian W, Wang L, et al. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(6):5577-5585. doi: 10.1021/acsami.7b18313
    [53]
    Peng T, Tan Z, Zhang M, et al. Facile and cost-effective manipulation of hierarchical carbon nanosheets for pseudocapacitive lithium/potassium storage[J]. Carbon,2020,165:296-305. doi: 10.1016/j.carbon.2020.04.034
    [54]
    Liu X, Giordano C, Antonietti M. A facile molten-salt route to graphene synthesis[J]. Small,2014,10(1):193-200. doi: 10.1002/smll.201300812
    [55]
    Xue P, Wu H, Lu Y, et al. Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: A review[J]. Journal of Materials Science & Technology,2018,34(6):914-930. doi: 10.1016/j.jmst.2017.10.005
    [56]
    Fechler N, Fellinger T P, Antonietti M. "Salt templating": A simple and sustainable pathway toward highly porous functional carbons from ionic liquids[J]. Advanced Materials,2013,25(1):75-79. doi: 10.1002/adma.201203422
    [57]
    Elumeeva K, Ren J, Antonietti M, et al. High surface iron/cobalt-containing nitrogen-doped carbon aerogels as non-precious advanced electrocatalysts for oxygen reduction[J]. ChemElectroChem,2015,2(4):584-591. doi: 10.1002/celc.201402364
    [58]
    Pang Z, Li G, Xiong X, et al. Molten salt synthesis of porous carbon and its application in supercapacitors: A review[J]. Journal of Energy Chemistry,2021,61:622-640. doi: 10.1016/j.jechem.2021.02.020
    [59]
    Schipper F, Vizintin A, Ren J, et al. Biomass-derived heteroatom-doped carbon aerogels from a salt melt sol-gel synthesis and their performance in Li-S batteries[J]. Chemsuschem,2015,8(18):3077-3083. doi: 10.1002/cssc.201500832
    [60]
    Liu X, Fechler N, Antonietti M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures[J]. Chemical Society Reviews,2013,42(21):8237-8265. doi: 10.1039/C3CS60159E
    [61]
    Li Q, Xu D, Ou X, et al. Nitrogen-doped graphitic porous carbon nanosheets derived from in situ formed g-C3N4 templates for the oxygen reduction reaction[J]. Chemistry-An Asian Journal,2017,12(14):1816-1823. doi: 10.1002/asia.201700586
    [62]
    Zhang G, Wang P, Lu W T, et al. Co nanoparticles/Co, N, S tri-doped graphene templated from in-situ-formed Co, S co-doped g-C3N4 as an active bifunctional electrocatalyst for overall water splitting[J]. ACS Applied Materials & Interfaces,2017,9(34):28566-28576. doi: 10.1021/acsami.7b08138
    [63]
    Zhang J, Chen X, Takanabe K, et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angewandte Chemie, International Edition in English,2010,49(2):441-444. doi: 10.1002/anie.200903886
    [64]
    Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability[J]. Chemical Reviews,2016,116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075
    [65]
    Wang D, Wang Y, Chen Y, et al. Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes[J]. Electrochimica Acta,2018,283:132-140. doi: 10.1016/j.electacta.2018.06.151
    [66]
    Xie X, He X, Shao X, et al. Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors[J]. Electrochimica Acta,2017,246:634-642. doi: 10.1016/j.electacta.2017.06.092
    [67]
    Su Q, Su Z, Xie W, et al. Preparation of 2D nitrogen-doped magnetic Fe3C/C by in-situ self-assembled double-template method for enhanced removal of Cr(VI)[J]. Environmental Pollution,2020,263:114374. doi: 10.1016/j.envpol.2020.114374
    [68]
    Liu H H, Zhang H L, Xu H B, et al. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors[J]. Nanoscale,2018,10(11):5246-5253. doi: 10.1039/C7NR08985F
    [69]
    Yamamoto T, Sugimoto T, Suzuki T, et al. Preparation and characterization of carbon cryogel microspheres[J]. Carbon,2002,40(8):1345-1351. doi: 10.1016/S0008-6223(01)00294-9
    [70]
    Yamamoto T, Nishimura T, Suzuki T, et al. Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying[J]. Journal of Non-Crystalline Solids,2001,288:46-55. doi: 10.1016/S0022-3093(01)00619-6
    [71]
    Tamon H, Lshizaka H, Yamamoto T, et al. Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors[J]. Carbon,2000,38:1099-1105. doi: 10.1016/S0008-6223(99)00235-3
    [72]
    Tamon H, Lshizaka H, Yamamoto T, et al. Preparation of mesoporous carbon by freeze drying[J]. Carbon,1999,37:2049-2055. doi: 10.1016/S0008-6223(99)00089-5
    [73]
    Qiu L, Liu J Z, Chang S L Y, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Nature Communications,2012,3:1241. doi: 10.1038/ncomms2251
    [74]
    Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials,2013,25(15):2219-2223. doi: 10.1002/adma.201204530
    [75]
    Chen W, Huang Y X, Li D B, et al. Preparation of a macroporous flexible three dimensional graphene sponge using an ice-template as the anode material for microbial fuel cells[J]. RSC Advances,2014,4(41):21619-21624. doi: 10.1039/C4RA00914B
    [76]
    Liao S, Zhai T, Xia H. Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures[J]. Journal of Materials Chemistry A,2016,4(3):1068-1077. doi: 10.1039/C5TA09540A
    [77]
    Barg S, Perez F M, Ni N, et al. Mesoscale assembly of chemically modified graphene into complex cellular networks[J]. Nature Communications,2014,5:4328. doi: 10.1038/ncomms5328
    [78]
    Lu Y, Yu L, Lou X W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries[J]. Chem,2018,4(5):972-996. doi: 10.1016/j.chempr.2018.01.003
    [79]
    Xu H, Zhao L, Liu X, et al. Metal‐organic‐framework derived core‐shell N‐doped carbon nanocages embedded with cobalt nanoparticles as high‐performance anode materials for lithium‐ion batteries[J]. Advanced Functional Materials,2020,30(50):2006188. doi: 10.1002/adfm.202006188
    [80]
    Li C, Chen T, Xu W, et al. Mesoporous nanostructured Co3O4 derived from MOF template: A high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(10):5585-5591. doi: 10.1039/C4TA06914E
    [81]
    Wang L, Wang Z, Xie L, et al. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(18):16619-16628. doi: 10.1021/acsami.9b03365
    [82]
    Xu X, Qiu Y, Wu J, et al. Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage[J]. Chinese Journal of Chemical Engineering,2021,32:416-422. doi: 10.1016/j.cjche.2020.09.055
    [83]
    Roberts A D, Li X, Zhang H. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials[J]. Chemical Society Reviews,2014,43(13):4341-4356. doi: 10.1039/C4CS00071D
    [84]
    Qie L, Chen W M, Wang Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials,2012,24(15):2047-2050. doi: 10.1002/adma.201104634
    [85]
    Vatamanu J, Vatamanu M, Bedrov D. Non-faradaic energy storage by room temperature ionic liquids in nanoporous electrodes[J]. ACS Nano,2015,9(6):5999-6017. doi: 10.1021/acsnano.5b00945
    [86]
    Uchaker E, Cao G. The role of intentionally introduced defects on electrode materials for alkali-ion batteries[J]. Chemistry-an Asian Journal,2015,10(8):1608-1617. doi: 10.1002/asia.201500401
    [87]
    Datta D, Li J, Koratkar N, et al. Enhanced lithiation in defective graphene[J]. Carbon,2014,80:305-310. doi: 10.1016/j.carbon.2014.08.068
    [88]
    Mukherjee R, Thomas A V, Datta D, et al. Defect-induced plating of lithium metal within porous graphene networks[J]. Nature Communications,2014,5:3710. doi: 10.1038/ncomms4710
    [89]
    Wang Q, Yan J, Fan Z. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities[J]. Energy & Environmental Science,2016,9(3):729-762. doi: 10.1039/c5ee03109e
    [90]
    Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon–electrolyte systems[J], Accounts of Chemical Research, 2013, 46: 1094-1103 DOI: 10.1021/ar200306b
    [91]
    Niu J, Shao R, Liang J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors[J]. Nano Energy,2017,36:322-330. doi: 10.1016/j.nanoen.2017.04.042
    [92]
    Wang Y, Zhang R, Chen J, et al. Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering[J]. Advanced Energy Materials,2019,9(24):1900953. doi: 10.1002/aenm.201900953
    [93]
    Cheng F, Liang J, Tao Z, et al. Functional materials for rechargeable batteries[J]. Advanced Materials,2011,23(15):1695-1715. doi: 10.1002/adma.201003587
    [94]
    Yu M, Wang Z, Wang Y, et al. Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li-S batteries[J]. Advanced Energy Materials,2017,7(17):1700018. doi: 10.1002/aenm.201700018
    [95]
    Ye C, Chao D, Shan J, et al. Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically[J]. Matter,2020,2(2):323-344. doi: 10.1016/j.matt.2019.12.020
    [96]
    Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries[J]. Nature Materials,2009,8(6):500-506. doi: 10.1038/nmat2460
    [97]
    Strubel P, Thieme S, Biemelt T, et al. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery[J]. Advanced Functional Materials,2015,25(2):287-297. doi: 10.1002/adfm.201402768
    [98]
    Ye X, Ma J, Hu Y S, et al. MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium–sulfur batteries[J]. Journal of Materials Chemistry A,2016,4(3):775-780. doi: 10.1039/C5TA08991C
    [99]
    Zhou G, Li L, Ma C, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy,2015,11:356-365. doi: 10.1016/j.nanoen.2014.11.025
    [100]
    Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications,2014,5:4759. doi: 10.1038/ncomms5759
    [101]
    Zhang Q, Wang Y, Seh Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries[J]. Nano Letters,2015,15(6):3780-3786. doi: 10.1021/acs.nanolett.5b00367
    [102]
    Peng H J, Zhang G, Chen X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angewandte Chemie, International Edition in English,2016,55(42):12990-12995. doi: 10.1002/anie.201605676
    [103]
    Pang Q, Shyamsunder A, Narayanan B, et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries[J]. Nature Energy,2018,3(9):783-791. doi: 10.1038/s41560-018-0214-0
    [104]
    Jia Y, Zhang L, Du A, et al. Defect graphene as a trifunctional catalyst for electrochemical reactions[J]. Advanced Materials,2016,28(43):9532-9538. doi: 10.1002/adma.201602912
    [105]
    Zhao X, Zou X, Yan X, et al. Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping[J]. Inorganic Chemistry Frontiers,2016,3(3):417-421. doi: 10.1039/C5QI00236B
    [106]
    Guan L, Hu H, Li L, et al. Intrinsic defect-rich hierarchically porous carbon architectures enabling enhanced capture and catalytic conversion of polysulfides[J]. ACS Nano,2020,14(5):6222-6231. doi: 10.1021/acsnano.0c02294
    [107]
    Wu Q, Yang L, Wang X, et al. Carbon-based nanocages: A new platform for advanced energy storage and conversion[J]. Advanced Materials,2020,32(27):1904177. doi: 10.1002/adma.201904177
    [108]
    Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501. doi: 10.1126/science.1246501
    [109]
    Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors[J]. Energy & Environmental Science,2014,7(3):867-884. doi: 10.1039/c3ee43526a
    [110]
    Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials,2010,22(8):28-62. doi: 10.1002/adma.200903328
    [111]
    Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials,2014,4(4):1300816. doi: 10.1002/aenm.201300816
    [112]
    Zheng X, Luo J, Lv W, et al. Two-dimensional porous carbon: Synthesis and ion-transport properties[J]. Advanced Materials,2015,27(36):5388-5395. doi: 10.1002/adma.201501452
    [113]
    Hao G P, Mondin G, Zheng Z, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture[J]. Angewandte Chemie, International Edition in English,2015,54(6):1941-1945. doi: 10.1002/anie.201409439
    [114]
    Xu F, Zhai Y, Zhang E, et al. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets[J]. Angewandte Chemie-International Edition,2020,59(44):19460-19467. doi: 10.1002/anie.202005118
    [115]
    Huettner C, Xu F, Paasch S, et al. Ultra-hydrophilic porous carbons and their supercapacitor performance using pure water as electrolyte[J]. Carbon,2021,178:540-551. doi: 10.1016/j.carbon.2021.03.013
    [116]
    Zhao J, Lai H, Lyu Z, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance[J]. Advanced Materials,2015,27(23):3541-3545. doi: 10.1002/adma.201500945
    [117]
    Xie K, Qin X, Wang X, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials,2012,24(3):347-352. doi: 10.1002/adma.201103872
    [118]
    Wei X, Wan S, Gao S. Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors[J]. Nano Energy,2016,28:206-215. doi: 10.1016/j.nanoen.2016.08.023
    [119]
    Zhao J, Liu C, Xiang K, et al. In-situ template formation strategy for the preparation of nitrogen doped carbon nanocage with graphitic shell as electrode material for supercapacitor[J]. Journal of Nanoscience and Nanotechnology,2018,18(10):6949-6956. doi: 10.1166/jnn.2018.15454
    [120]
    Ma  J, Dong  Y Z, Wang L, et al. In-situ molten salt template strategy for hierarchical 3D porous carbon from palm shells as advanced electrochemical supercapacitors[J]. ChemistrySelect,2016,1(10):2167-2173. doi: 10.1002/slct.201600250
    [121]
    Pampel J, Denton C, Fellinger T P. Glucose derived ionothermal carbons with tailor-made porosity[J]. Carbon,2016,107:288-296. doi: 10.1016/j.carbon.2016.06.009
    [122]
    Hu L, Zhu Q, Wu Q, et al. Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):13949-13959. doi: 10.1021/acssuschemeng.8b02299
    [123]
    Wang M, Liu H, Zhai D D, et al. In-situ synthesis of highly nitrogen, sulfur co-doped carbon nanosheets from melamine-formaldehyde-thiourea resin with improved cycling stability and energy density for supercapacitors[J]. Journal of Power Sources,2019,416:79-88. doi: 10.1016/j.jpowsour.2019.01.092
    [124]
    Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews,2015,44(8):2168-2201. doi: 10.1039/C4CS00484A
    [125]
    Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B:Environmental,2005,56(1):9-35. doi: 10.1016/j.apcatb.2004.06.021
    [126]
    Shao M, Chang Q, Dodelet J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews,2016,116(6):3594-3657. doi: 10.1021/acs.chemrev.5b00462
    [127]
    Zhou M, Wang H L, Guo S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews,2016,45(5):1273-1307. doi: 10.1039/C5CS00414D
    [128]
    Zhu C, Li H, Fu S, et al. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures[J]. Chemical Society Reviews,2016,45(3):517-531. doi: 10.1039/C5CS00670H
    [129]
    Zeng H, Wang W, Li J, et al. In situ generated dual-template method for Fe/N/S co-doped hierarchically porous honeycomb carbon for high-performance oxygen reduction[J]. ACS Applied Materials & Interfaces,2018,10(10):8721-8729 DOI: 10.1021/acsami.7b19645.
    [130]
    Li Y, Zhang H, Wang Y, et al. A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts[J]. Energy & Environmental Science,2014,7(11):3720-3726 DOI: 10.1039/c4ee01779j .
    [131]
    Zamani P, Higgins D C, Hassan F M, et al. Highly active and porous graphene encapsulating carbon nanotubes as a non-precious oxygen reduction electrocatalyst for hydrogen-air fuel cells[J]. Nano Energy,2016,26:267-275. doi: 10.1016/j.nanoen.2016.05.035
    [132]
    Liu Y, Yu L, Jiang X, et al. In situ self-template synthesis of cobalt/nitrogen-doped nanocarbons with controllable shapes for oxygen reduction reaction and supercapacitors[J]. International Journal of Energy Research,2019,43(9):4217-4228. doi: 10.1002/er.4546
    [133]
    Bockris J O M. The origin of ideas on a hydrogen economy and its solution to the decay of the environment[J]. International Journal of Hydrogen Energy,2002,27(7-8):731-740. doi: 10.1016/S0360-3199(01)00154-9
    [134]
    Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials,2009,8(1):76-80. doi: 10.1038/nmat2317
    [135]
    Lewis N S, Nocera D G. Powering the planet: Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(43):15729-15735. doi: 10.1073/pnas.0603395103
    [136]
    Thoi V S, Sun Y, Long J R, et al. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions[J]. Chemical Society Reviews,2013,42(6):2388-2400. doi: 10.1039/C2CS35272A
    [137]
    Mckone J R, Marinescu S C, Brunschwig B S, et al. Earth-abundant hydrogen evolution electrocatalysts[J]. Chemical Science,2014,5(3):865-878. doi: 10.1039/C3SC51711J
    [138]
    Zhuo J, Wang T, Zhang G, et al. Salts of C60(OH)8 electrodeposited onto a glassy carbon electrode: Surprising catalytic performance in the hydrogen evolution reaction[J]. Angewandte Chemie, International Edition in English,2013,52(41):10867-10870. doi: 10.1002/anie.201305328
    [139]
    Du P, Eisenberg R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges[J]. Energy & Environmental Science,2012,5(3):6012-6021. doi: 10.1039/c2ee03250c
    [140]
    Cobo S, Heidkamp J, Jacques P A, et al. A janus cobalt-based catalytic material for electro-splitting of water[J]. Nature Materials,2012,11(9):802-807. doi: 10.1038/nmat3385
    [141]
    Jaramillo T F, Jorgensen K P, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science,2007,317(5834):100-102. doi: 10.1126/science.1141483
    [142]
    Yu H, Sun X, Tang D, et al. Molten salt strategy to synthesize alkali metal-doped Co9S8 nanoparticles embedded, N, S, Co-doped mesoporous carbon as hydrogen evolution electrocatalyst[J]. International Journal of Hydrogen Energy,2020,45(11):6006-6014. doi: 10.1016/j.ijhydene.2019.12.115
    [143]
    Zheng Y, Jiao Y, Zhu Y, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Communications,2014,5:3783. doi: 10.1038/ncomms4783
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article Views(935) PDF Downloads(160) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return