Volume 37 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
TANG Song-yuan, WANG Yong-sheng, YUAN Ya-fei, BA Ya-qi, WANG Li-qiu, HAO Guang-ping, LU An-hui. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting. New Carbon Mater., 2022, 37(1): 237-244. doi: 10.1016/S1872-5805(22)60576-6
Citation: TANG Song-yuan, WANG Yong-sheng, YUAN Ya-fei, BA Ya-qi, WANG Li-qiu, HAO Guang-ping, LU An-hui. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting. New Carbon Mater., 2022, 37(1): 237-244. doi: 10.1016/S1872-5805(22)60576-6

Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting

doi: 10.1016/S1872-5805(22)60576-6
Funds:  National Natural Science Foundation of China (21975037); Fundamental Research Funds for the Central Universities (DUT18RC(3)075); Liao Ning Revitalization Talents Program (XLYC1807205).
More Information
  • Corresponding author: HAO Guang-ping, Ph.D, Professor. E-mail: guangpinghao@dlut.edu.cn; LU An-hui, Ph.D, Professor. E-mail: anhuilu@dlut.edu.cn
  • Received Date: 2021-11-08
  • Rev Recd Date: 2021-12-08
  • Available Online: 2021-12-17
  • Publish Date: 2022-02-01
  • Atmospheric water harvesting (AWH) is considered a promising technique to address the problem of global water shortage. Adsorption-based AWH technology, has the advantages of a simple device structure, high energy efficiency, wide application range, etc., and has attracted much attention. For the adsorption, one of the key issues is to find high-performance porous adsorbents. Porous carbons have exceptional stability, high porosity and low cost, but are usually highly hydrophobic with a low affinity for polar water molecules. A class of monolithic porous carbons with good hydrophilicity was prepared by the pyrolysis of composites consisting of a metal-organic framework in a resorcinol-formaldehyde resin matrix, in which the metal-organic parts developed polar sites in the final products. AWH tests showed that in a relative humidity of 40%-80%, the water capture capacity of the adsorbents reached 20%.
  • loading
  • [1]
    LaPotin A, Zhong Y, Zhang L, et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production[J]. Joule,2021,5(1):166-182. doi: 10.1016/j.joule.2020.09.008
    [2]
    Park K, Kim P, Grinthal A, et al. Condensation on slippery asymmetric bumps[J]. Nature,2016,531:78-82. doi: 10.1038/nature16956
    [3]
    Bagheri F. Performance investigation of atmospheric water harvesting systems[J]. Water Resources and Industry,2018,20:23-28. doi: 10.1016/j.wri.2018.08.001
    [4]
    Kim H, Rao S R, LaPotin A, et al. Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting[J]. International Journal of Heat and Mass Transfer,2020,161:120253. doi: 10.1016/j.ijheatmasstransfer.2020.120253
    [5]
    Kim H, Rao S R, Kapustin E A, et al. Adsorption-based atmospheric water harvesting device for arid climates[J]. Nature Communications,2018,9:1191. doi: 10.1038/s41467-018-03162-7
    [6]
    Hanikel N, Prevot M S, Yaghi O M. MOF water harvesters[J]. Nature Nanotechnology,2020,15:348-355. doi: 10.1038/s41565-020-0673-x
    [7]
    王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能,2020,01:33-46. doi: 10.3969/j.issn.1003-0417.2020.01.005

    Wang W, Ge T, Dai Y, et al. Status of solar-driven sorption-based atmosphere water harvesting[J]. Solar Energy,2020,01:33-46. doi: 10.3969/j.issn.1003-0417.2020.01.005
    [8]
    Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science,2017,356:430-434. doi: 10.1126/science.aam8743
    [9]
    Zhao J, Lai H, Lyu Z, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance[J]. Advanced Materials,2015,27:3541. doi: 10.1002/adma.201500945
    [10]
    Wang T, Huang H, Li H, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Materials,2021,36(4):683-701. doi: 10.1016/S1872-5805(21)60066-5
    [11]
    Tuo Y, Liu X, Shi L, et al. Searching for efficient defect types in carbon nanofibers to promote supported Pt catalytic activity for dehydrogenation reaction[J]. Catalysis Today,2020,347:87-95. doi: 10.1016/j.cattod.2018.05.055
    [12]
    Du S, Wang X, Huang J, et al. Ultramicroporous carbons featuring sub-Ångstrom tunable apertures for the selective separation of light hydrocarbon[J]. AlChE Journal,2021,67(9):17285.
    [13]
    Liu Y, Zhao C, Li Z, et al. Adsorption and desorption of gaseous naphthalene on carbonaceous sorbents: Insights into advantageous pore sizes and morphologies[J]. Journal of Cleaner Production,2021,314:127905. doi: 10.1016/j.jclepro.2021.127905
    [14]
    Hou Z, Luo M, Yang Y, et al. Algae-based carbons: Design, preparation and recent advances in their use in energy storage, catalysis and adsorption[J]. New Carbon Materials,2021,36(2):278-303. doi: 10.1016/S1872-5805(21)60020-3
    [15]
    Yuan Y, Wang Y, Zhang X, et al. Wiggling mesopores kinetically amplify the adsorptive separation of propylene/propane[J]. Angewandte Chemie International Edition,2021,60(35):19063-19067. doi: 10.1002/anie.202106523
    [16]
    Hao G, Zhang Q, Sin M, et al. Design of hierarchically porous carbons with interlinked hydrophilic and hydrophobic surface and their capacitive behavior chemistry of materials[J]. Chemistry of Materials,2016,28:8715. doi: 10.1021/acs.chemmater.6b03964
    [17]
    胡友仁, 董晓玲, 侯璐, 等. 二维B、N掺杂炭片的电化学氧化及其赝电容性能[J]. 新型炭材料,2021,36(6):1109-1117. doi: 10.1016/S1872-5805(21)60084-7

    Hu Y, Dong X, Hou L, et al. Electrochemical oxidation of 2D B, N-doped carbon nanosheets for pseudocapacitance property[J]. New Carbon Materials,2021,36(6):1109-1117. doi: 10.1016/S1872-5805(21)60084-7
    [18]
    Liu W, Jiang H, Yu H. Development of biochar-based functional materials: toward a sustainable platform carbon material[J]. Chemical Reviews,2015,115:12251. doi: 10.1021/acs.chemrev.5b00195
    [19]
    Hao G, Mondin G, Zheng Z, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture[J]. Angewandte Chemie International Edition,2015,54:1941-1945. doi: 10.1002/anie.201409439
    [20]
    Hao G, Tang C, Zhang E, et al. Thermal exfoliation of layered metal–organic frameworks into ultrahydrophilic graphene stacks and their applications in Li–S batteries[J]. Advanced Materials,2017,29(37):1702829. doi: 10.1002/adma.201702829
    [21]
    Wang Y, Wu Y, Xu W, et al. Highly efficient and stable bicomponent cobalt oxide-copper catalysts for dehydrogenation[J]. Catalysis Communications,2020,142:106043. doi: 10.1016/j.catcom.2020.106043
    [22]
    Wang Y, Zhu H, Duan Z, et al. Study on the structure of Cu/ZrO2 catalyst and the formation mechanism of disodium iminodiacetate and sodium glycine[J]. Catalysis Letters,2020,150(4):1111-1120. doi: 10.1007/s10562-019-02989-z
  • 20210265-支撑材料.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article Views(501) PDF Downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return