留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of graphene/copper nanocomposites by ball milling followed by pressureless vacuum sintering

HU Zeng-rong DAI Rui WANG Di-ni WANG Xiao-nan CHEN Feng FAN Xue-liang CHEN Chang-jun LIAO Yi-liang NIAN Qiong

胡增荣, 代睿, 王滴泥, 王晓南, 陈峰, 范学良, 陈长军, 廖移量, 年琼. 常压烧结法制备石墨烯-铜纳米复合材料[J]. 新型炭材料, 2021, 36(2): 420-428. doi: 10.1016/S1872-5805(21)60023-16
引用本文: 胡增荣, 代睿, 王滴泥, 王晓南, 陈峰, 范学良, 陈长军, 廖移量, 年琼. 常压烧结法制备石墨烯-铜纳米复合材料[J]. 新型炭材料, 2021, 36(2): 420-428. doi: 10.1016/S1872-5805(21)60023-16
HU Zeng-rong, DAI Rui, WANG Di-ni, WANG Xiao-nan, CHEN Feng, FAN Xue-liang, CHEN Chang-jun, LIAO Yi-liang, NIAN Qiong. Preparation of graphene/copper nanocomposites by ball milling followed by pressureless vacuum sintering[J]. NEW CARBOM MATERIALS, 2021, 36(2): 420-428. doi: 10.1016/S1872-5805(21)60023-16
Citation: HU Zeng-rong, DAI Rui, WANG Di-ni, WANG Xiao-nan, CHEN Feng, FAN Xue-liang, CHEN Chang-jun, LIAO Yi-liang, NIAN Qiong. Preparation of graphene/copper nanocomposites by ball milling followed by pressureless vacuum sintering[J]. NEW CARBOM MATERIALS, 2021, 36(2): 420-428. doi: 10.1016/S1872-5805(21)60023-16

常压烧结法制备石墨烯-铜纳米复合材料

doi: 10.1016/S1872-5805(21)60023-16
详细信息
  • 中图分类号: TB33

Preparation of graphene/copper nanocomposites by ball milling followed by pressureless vacuum sintering

Funds: Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0285), Arizona State University Startup Funding and National Science Foundation
More Information
  • 摘要: 石墨烯由于具有超高强度、刚度以及优异的热学和电学性能,被认为是金属基复合材料的理想增强相。本文采用常压烧结法制备了石墨烯增强铜基纳米复合材料。采用电镜观察以及其它相应的材料表征对其微观组织及化学成分进行了研究。这些表征结果显示了常压烧结后石墨烯在复合材料中的留存及分布情况。随后对复合材料的硬度及摩擦系数进行了测试。测试结果表明石墨烯可以显著提高复合材料的硬度,同时减小其摩擦系数。
  • FIG. 578.  FIG. 578.

    FIG. 578.. 

    Figure  1.  SEM images of (a) 1 wt. % Gr/Cu mixture, and (b) 2.5 wt. % Gr/Cu mixture, (c) 5 wt %Gr/Cu mixture, (d) focused-in observation of 5 wt. %Gr/Cu mixture and (e) temperature profile of vacuum sintering process, the insert image shows the photo of the sintered nanocomposite sample.

    Figure  2.  Surface morphology of vacuum sintered (a) Cu, (b) 1 wt. % Gr/Cu, (c) 2.5 wt. % Gr/Cu, (d) 5 wt. % Gr/Cu nanocomposites, (e) magnified observation of 2.5 wt. % Gr/Cu, (f) sectional morphology of 5 wt. % Gr/Cu and (g) TEM image of 5 wt. % Gr/Cu composites.

    Figure  3.  (a) The XRD patterns of vacuum sintered Gr-Cu nanocomposites, (b) Raman spectra of pristine graphene and the vacuum sintered Gr-Cu nanocomposites and (c) EDS maps of carbon and copper elements in vacuum sintered Gr-Cu nanocomposite.

    Figure  4.  HRTEM images of Gr-Cu composites: (a) graphene, Cu and their interface, with corresponding SAED patterns and (b) Cu area with the corresponding SAED pattern.

    Figure  5.  (a) The Vickers hardness of vacuum sintered Cu and Gr/Cu composites and (b) effect of the graphene content on the friction coefficient of Gr/Cu composites.

  • [1] Bakshi S R, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites - a review[J]. International Materials Reviews,2010,55(1):41-64. doi: 10.1179/095066009X12572530170543
    [2] Neubauer E, Kitzmantel M, Hulman M, et al. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes[J]. Composites Science and Technology,2010,70(16):2228-2236. doi: 10.1016/j.compscitech.2010.09.003
    [3] Sun L, Fugetsu B. Mass production of graphene oxide from expanded graphite[J]. Materials Letters,2013,109(1):207-210.
    [4] Hu Z, Tong G, Lin D, et al. Graphene-reinforced metal matrix nanocomposites - a review[J]. Materials Science and Technology,2016:1-24.
    [5] Bartolucci S F, Paras J, Rafiee M A, et al. Graphene-aluminum nanocomposites[J]. Materials Science and Engineering: A,2011,528(27):7933-7937. doi: 10.1016/j.msea.2011.07.043
    [6] Li J F, Zhang L, Xiao J K, et al. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite[J]. Transactions of Nonferrous Metals Society of China,2015,25(10):3354-3362. doi: 10.1016/S1003-6326(15)63970-X
    [7] Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, Estrada-Guel I, Martínez-Sánchez R. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying[J]. Journal of Alloys and Compounds,2014,615(Supplement 1):S578-S82.
    [8] Kim WJ, Lee TJ, Han SH. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties[J]. Carbon,2014,69:55-65. doi: 10.1016/j.carbon.2013.11.058
    [9] Chu K, Jia C. Enhanced strength in bulk graphene-copper composites[J]. Physica Status Solidi (a),2014,211(1):184-90. doi: 10.1002/pssa.201330051
    [10] Xu Z, Buehler M J. Interface structure and mechanics between graphene and metal substrates: A first-principles study[J]. Journal of Physics: Condensed Matter,2010,22(48):485301. doi: 10.1088/0953-8984/22/48/485301
    [11] Pavithra L P, Sarada B V, Rajulapati K V, et al. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness[J]. Scientific Reports,2014,4:4049.
    [12] Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications,2007,143(1-2):47-57. doi: 10.1016/j.ssc.2007.03.052
    [13] Hu Z, Tong G, Nian Q, et al. Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites[J]. Composites Part B: Engineering,2016,93:352-359. doi: 10.1016/j.compositesb.2016.03.043
    [14] Kuang D, Xu L, Liu L, et al. Graphene nickle composite[J]. Applied Surface Science,2013,273(0):484-490.
    [15] Zengrong H, Feng C, Dong L, et al. Laser additive manufacturing bulk graphene-copper nanocomposites[J]. Nanotechnology,2017,28(44):445705. doi: 10.1088/1361-6528/aa8946
    [16] Sadowski P, Kowalczyk-Gajewska K, Stupkiewicz S. Classical estimates of the effective thermoelastic properties of copper-graphene composites[J]. Composites Part B: Engineering,2015,80:278-290. doi: 10.1016/j.compositesb.2015.06.007
    [17] Algul H, Tokur M, Ozcan S, et al. The effect of graphene content and sliding speed on the wear mechanism of nickel-graphene nanocomposites[J]. Applied Surface Science,2015,359:340-348. doi: 10.1016/j.apsusc.2015.10.139
  • 20190095supporting materials-gr-cu.docx
  • 加载中
图(6)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  14
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-24
  • 修回日期:  2020-01-13
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回