留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An Innovative and Efficient Preparation of Mesocarbon Microbeads by The Delayed Capillary Breakup Method and Their Electrochemical Performance

DONG Si-lin YANG Jian-xiao CHANG Sheng-kai SHI Kui LIU Yue ZOU Jia-ling LI Jun

DONG Si-lin, YANG Jian-xiao, CHANG Sheng-kai, SHI Kui, LIU Yue, ZOU Jia-ling, LI Jun. An Innovative and Efficient Preparation of Mesocarbon Microbeads by The Delayed Capillary Breakup Method and Their Electrochemical Performance. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60606-1
Citation: DONG Si-lin, YANG Jian-xiao, CHANG Sheng-kai, SHI Kui, LIU Yue, ZOU Jia-ling, LI Jun. An Innovative and Efficient Preparation of Mesocarbon Microbeads by The Delayed Capillary Breakup Method and Their Electrochemical Performance. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60606-1

doi: 10.1016/S1872-5805(22)60606-1

An Innovative and Efficient Preparation of Mesocarbon Microbeads by The Delayed Capillary Breakup Method and Their Electrochemical Performance

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The preparation progress of MCMBs by the DCB method.

    Figure  2.  SEM images of (a, b) C-MP, (c, d) C-MS-W and (e, f) C-MS-T.

    Figure  3.  TG-DSC curves of MP, MS-W, MS-T in nitrogen atmosphere (a, b) and in air atmosphere (c, d), and TG-DSC curves of O-MP, O-MS-W, O-MS-T in nitrogen atmosphere (e, f).

    Figure  4.  FTIR and Raman spectra of (a, d) MP, MS-W, MS-T, (b, e) O-MP, O-MS-W, O-MS-T and (c, f) C-MP, C-MS-W, C-MS-T.

    Figure  5.  TEM images of (a) A-MP, (b) A-MS-W, (c) A-MS-T and nitrogen adsorption isotherms (d), pore size distributions (e) and Raman spectra (f) of A-MCMBs.

    Figure  6.  FTIR (a) and XPS (b) spectra, and the high resolution of C1s XPS spectra (c) and O1s XPS spectra (d) of A-MCMBs.

    Figure  7.  CV curves at the scanning speed of 100 mV s−1 (a), GCD curves at a current density of 0.5 A g−1 (b) and EIS curves (c) of A-MCMBs.

    Figure  8.  TEM images of (a, b, c) G-MP, (d, e, f) G-MS-W and (g, h, i) G-MS-T.

    Figure  9.  Raman spectra (a), nitrogen adsorption isotherms (b) and XRD patterns (c) of G-MCMBs.

    Figure  10.  The 1st discharge/charge curves between 0.005 and 3.0 V at a current density of 100 mA g−1 (a), Rate capacities at current densities from 0.05 to 2 A g−1 (b), Cycling performance and coulombic efficiency at 100 mA g−1 (c) and Nyquist plots (d) of G-MCMBs.

    Table  1.   Relevant analysis results of samples.

    SamplesYield
    (%)
    TG (in N2)DSC (in air)FTIRRaman
    Td
    (°C)
    W
    (%)
    △T
    (°C)
    △H
    (J/g)
    △H/△TIOSICHSIAID/IGIA/IG
    MP235542072911.410.2250.5010.5030.690.40
    MS-W241522184051.860.2240.5000.5020.640.35
    MS-T305722212090.950.2120.4980.5010.600.32
    O-MP103291770.2430.5000.5000.830.45
    O-MS-W104296770.2410.4950.5010.690.38
    O-MS-T105301800.2390.4940.4990.620.33
    C-MP700.2500.4990.5001.140.53
    C-MS-W720.2490.4980.4991.120.51
    C-MS-T740.2470.4970.4981.080.45
    下载: 导出CSV

    Table  2.   Microstructure and porosity parameters of A-MCMBs.

    SamplesRamanParameters of pore structure
    ID/IGIA/IGSBET
    (m2 g−1)
    Vmic
    (cm3 g−1)
    Vmes
    (cm3 g−1)
    Vtot
    (cm3 g−1)
    D
    (nm)
    A-MP0.990.6012220.160.490.655.04
    A-MS-W0.960.7111900.330.170.505.00
    A-MS-T0.940.7213910.370.240.614.19
    下载: 导出CSV

    Table  3.   FTIR and XPS analysis results of A-MCMBs.

    SamplesFTIRXPS (at%)percentage of total C1spercentage of total O1s
    IOSICHSIACOC=CC―OC=OCOOHC=OC―OCOOH
    A-MP 0.251 0.500 0.502 90.03 8.70 35.29 23.73 19.85 21.13 31.66 35.91 32.43
    A-MS-W 0.231 0.480 0.482 90.45 8.39 35.26 23.75 19.87 21.12 32.46 36.04 31.50
    A-MS-T 0.220 0.460 0.462 91.28 7.64 34.32 24.28 21.27 20.13 32.96 37.20 29.84
    下载: 导出CSV

    Table  4.   Electrochemical properties of different A-MCMBs.

    SamplesSpecific capacitance (F/g)Capacitance retention(%)Rct(Ω)
    0.5 A g−11 A g−12 A g−15 A g−110 A g−1
    A-MP156.9131.1118.8108.5100.063.70.6
    A-MS-W178.6169.5153.4145.0139.077.80.5
    A-MS-T193.5166.2147.0135.5129.066.60.3
    下载: 导出CSV

    Table  5.   Parameters of pore structure and graphite microcrystallite s of G-MCMBs.

    SamplesID/IGID’/IGSBET
    (m2 g−1)
    d002
    (nm)
    Lc
    (nm)
    La
    (nm)
    N
    (n)
    G
    G-MP0.210.051.600.33660.65821.39762.960.861
    G-MS-W0.180.042.250.33660.69731.98623.070.861
    G-MS-T0.140.023.530.33630.56802.45562.690.895
    下载: 导出CSV

    Table  6.   Cycle performance of different G-MCMBs.

    SamplesSpecific capacity (mAh g−1)ICE
    (%)

    Capacity retention
    (%)
    Rct
    (Ω)
    D1C1D2D3D100
    G-MP329.4277.6285.1277.1255.384.2777.50295.9
    G-MS-W401.4346.9354.0349.6313.686.4278.13301.9
    G-MS-T408.1353.0366.6362.4353.586.5086.6295.5
    下载: 导出CSV
  • [1] Xia H Y, Wang J P, Huang B, et al. The influence of ball-milling on improving the performance of mesocarbon microbeads based carbon blocks[J]. Materials Science & Engineering A,2011,529:282-288.
    [2] Lin X B, Hui C, Wu J, et al. TiC-modified CNTs as reinforcing fillers for isotropic graphite produced from mesocarbon microbeads[J]. New Carbon Materials,2021,36(5):961-969. doi: 10.1016/S1872-5805(21)60067-7
    [3] Zhao G Y, Wei Z H, Zhang N Q, et al. Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes[J]. Materials Letters,2012,89:243-246. doi: 10.1016/j.matlet.2012.07.066
    [4] Li F H, Chi W D, Shen Z M, et al. Activation of mesocarbon microbeads with different textures and their application for supercapacitor[J]. Fuel Processing Technology,2010,91(1):17-24. doi: 10.1016/j.fuproc.2009.08.020
    [5] Ji Y B, Li T H, Zhu L, et al. Preparation of activated carbons by microwave heating KOH activation[J]. Applied Surface Science,2007,254(2):506-512. doi: 10.1016/j.apsusc.2007.06.034
    [6] Liu Y C, Qiu X P, Zhu W T, et al. Impedance studies on mesocarbon microbeads supported Pt-Ru catalytic anode[J]. Journal of Power Sources,2003,114(1):10-14. doi: 10.1016/S0378-7753(02)00527-X
    [7] Wu B, Gong Q M, Song H H, et al. Prickly structure of multi-walled carbon nanotube reinforced mesocarbon microbead composite with high strength at elevated temperature[J]. Composites Part B-Engineering,2014,56:876-881. doi: 10.1016/j.compositesb.2013.09.033
    [8] Cheng Y L, Li T H, Fang C Q, et al. In situ preparation and mechanical properties of CNTs/MCMBs composites[J]. Composites Part B-Engineering,2013,47:290-297. doi: 10.1016/j.compositesb.2012.11.009
    [9] Chaudhary A, Teotia S, Kumar R, et al. Multi-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performance[J]. Composites Part B-Engineering,2019,176:11.
    [10] Yong-Gang, Wang, And, et al. Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black[J]. Carbon,1999,37(2):307-314. doi: 10.1016/S0008-6223(98)00179-1
    [11] Li F H, Shen Z M, Xue R S, et al. Study on mesocarbon microbeads prepared by the emulsion method[J]. New Carbon Materials,2004,19(1):21-27.
    [12] Korai Y, Ishida S, Yoon S H, et al. Preparation of mesocarbon microbeads by dispersing mesophase pitch in isotropic pitches[J]. Carbon,1997,35(10):1503-1515.
    [13] Brooks J D, Taylor G H. Formation of Graphitizing Carbons from the Liquid Phase[J]. Nature,1965,3(2):185,IN189,187-186,IN118,193.
    [14] Wang Y G, Chang Y C, Ishida S, et al. Preparation of mesocarbon microbeads from a synthetic isotropic pitch through two stage heat treatment in the presence of carbon black[J]. Carbon,1998,36(36):1231-1233.
    [15] Ma Z C, Lin Q L, Cai Q H, et al. Effect of rosin addition on preparation of mesocarbon microbeads[J]. Gongneng Cailiao/Journal of Functional Materials,2012,43(8):1052-1055.
    [16] Yang Y S, Wang C Y, Chen M M. Preparation and structure analysis of nano-iron/mesocarbon microbead composites made from a coal tar pitch with addition of ferrocene[J]. Journal of Physics and Chemistry of Solids,2009,70(10):1344-1347. doi: 10.1016/j.jpcs.2009.07.023
    [17] Li T Q, Wang C Y, Liu X J, et al. Characteristics of mesocarbon microbeads generated from a coal tar pitch with addition of micro-alumina powder[J]. Fuel Processing Technology,2005,87(1):77-83. doi: 10.1016/j.fuproc.2005.07.003
    [18] Yang Y S, Wang C Y, Chen M M, et al. The role of primary quinoline insoluble on the formation of mesocarbon microbeads[J]. Fuel Processing Technology,2011,92(1):154-157. doi: 10.1016/j.fuproc.2010.08.024
    [19] Cheng Y L, Li T H, Hou X L, et al. Effects of AlCl3-NaCl Content on the Formation of Mesocarbon Microbeads[J]. International Journal of Chemical Reactor Engineering,2010,8:13.
    [20] Cheng Y L, Li T H, Li F J, et al. Preparation of Mesocarbon Microbeads with Silicone Oil/Pitch Emulsion[J]. Journal of Materials Engineering,2010,24(3):56-59.
    [21] Qiu H S, Li Y F, Wang Y P, et al. A novel form of carbon micro-balls from coal[J]. Carbon,2003,41(4):767-772. doi: 10.1016/S0008-6223(02)00392-5
    [22] Zhang D K, Zhang L Z, Fang X L, et al. Enhancement of mesocarbon microbead (MCMB) preparation through supercritical fluid extraction and fractionation[J]. Fuel,2019,237:753-762. doi: 10.1016/j.fuel.2018.10.054
    [23] Kim Y, Hossain A, Nakamura Y. Numerical modeling of melting and dripping process of polymeric material subjected to moving heat flux: Prediction of drop time[J]. Proceedings of the Combustion Institute,2015,35:2555-2562. doi: 10.1016/j.proci.2014.05.068
    [24] Kim Y, Hossain A, Nakamura Y. Numerical Study of Effect of Thermocapillary Convection on Melting Process of Phase Change Material subjected to Local Heating[J]. Journal of Thermal Science and Technology,2013,8(1):136-151. doi: 10.1299/jtst.8.136
    [25] Kim Y, Hossain A, Nakamura Y. Numerical study of melting of a phase change material (PCM) enhanced by deformation of a liquid-gas interface[J]. International Journal of Heat and Mass Transfer,2013,63:101-112. doi: 10.1016/j.ijheatmasstransfer.2013.03.052
    [26] Lu Y, Hussein A, Li D Z, et al. Properties of Bio-pitch and Its Wettability on Coke[J]. Acs Sustainable Chemistry & Engineering,2020,8(40):15366-15374.
    [27] Li S Z, Tian Y M, Zhong Y J, et al. Formation mechanism of carbon foams derived from mesophase pitch[J]. Carbon,2011,49(2):618-624. doi: 10.1016/j.carbon.2010.10.007
    [28] Watanabe F, Korai Y, Mochida I, et al. Structure of melt-blown mesophase pitch-based carbon fiber[J]. Carbon,2000,38(5):741-747. doi: 10.1016/S0008-6223(99)00148-7
    [29] Yu R, Liu D, Lou B, et al. The effect of solvent extraction on petroleum pitch compositions and their pyrolysis behaviors[J]. Fuel,2019,247:97-107. doi: 10.1016/j.fuel.2019.03.041
    [30] Li M, Liu D, Lv R Q, et al. Preparation of the Mesophase Pitch by Hydrocracking Tail Oil from a Naphthenic Vacuum Residue[J]. Energy & Fuels,2015,29(7):4193-4200.
    [31] Yoon S H, Park Y D, Mochida I. Preparation of carbonaceous spheres from suspensions of pitch materials[J]. Carbon,1992,30(5):781-786. doi: 10.1016/0008-6223(92)90162-P
    [32] Shi K, Zhang X X, Wu W, et al. Effect of the oxygen content and the functionality of spinnable pitches derived from ethylene tar by distillation on the mechanical properties of carbon fibers[J]. New Carbon Materials,2019,34(1):84-92. doi: 10.1016/S1872-5805(19)60003-X
    [33] Dungen P, Schlogl R, Heumann S. Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups[J]. Carbon,2018,130:614-622. doi: 10.1016/j.carbon.2018.01.047
    [34] Yuan M, Cao B, Meng C Y, et al. Preparation of pitch-based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium-ion batteries[J]. Chemical Engineering Journal,2020,400:9.
    [35] Dauché F M, Bolaños G, Blasig A, et al. Control of mesophase pitch properties by supercritical fluid extraction[J]. Carbon,1998,36(7-8):953-961. doi: 10.1016/S0008-6223(97)00212-1
    [36] Gong X, Lou B, Yu R, et al. Carbonization of mesocarbon microbeads prepared from mesophase pitch with different anisotropic contents and their application in lithium-ion batteries[J]. Fuel Processing Technology,2021,217:13.
    [37] Ji Y, Li T, Li Z, et al. Preparation of activated carbons by microwave heating KOH activation[J]. Applied Surface Science,2007,254(2):506-512. doi: 10.1016/j.apsusc.2007.06.034
    [38] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science,2006,313(5794):1760-1763. doi: 10.1126/science.1132195
    [39] Shen Z, Xue R. Preparation of activated mesocarbon microbeads with high mesopore content[J]. Fuel Processing Technology,2003,84(1-3):95-103. doi: 10.1016/S0378-3820(03)00050-X
    [40] Xie L J, Sun G H, Su F Y, et al. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications[J]. Journal of Materials Chemistry A,2016,4(5):1637-1646. doi: 10.1039/C5TA09043A
    [41] Liu F Y, Wang Z X, Zhang H T, et al. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon,2019,149:105-116. doi: 10.1016/j.carbon.2019.04.023
    [42] Lei Y, Huang Z H, Yang Y, et al. Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor[J]. Scientific Reports,2013,3:6.
    [43] Biscoe J, Warren B E. An X‐Ray Study of Carbon Black[J]. Journal of Applied Physics,1942,13(6):364-371. doi: 10.1063/1.1714879
    [44] Guo A, Wang F, Jiao S, et al. Preparation of mesocarbon microbeads as anode material for lithium-ion battery by thermal polymerization of a distillate fraction from an FCC slurry oil after hydrofining with suspended catalyst[J]. Fuel,2020,276:11.
    [45] Zhang Y P, Wang J X, Zhao P Y, et al. Anode performance of NaOH-etched mesocarbon microbeads for sodium-ion batteries[J]. Materials Science and Engineering:B,2021,264:6.
    [46] Yang S B, Song H H, Chen X H. Expansion of mesocarbon microbeads[J]. Carbon,2006,44(4):730-733. doi: 10.1016/j.carbon.2005.09.019
    [47] Wang Y X, Tian W, Wang L H, et al. A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries[J]. Acs Applied Materials & Interfaces,2018,10(6):5577-5585.
    [48] Zhong M, Yan J W, Wu H X, et al. Multilayer graphene spheres generated from anthracite and semi-coke as anode materials for lithium-ion batteries[J]. Fuel Processing Technology,2020,198:8.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  45
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 网络出版日期:  2022-04-01

目录

    /

    返回文章
    返回