留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene oxide aerogels by 3D printing

WANG Meng-ya LI Shi-you GAO Can-kun FAN Xiao-qi QUAN Yin LI Xiao-hua LI Chun-lei ZHANG Ning-shuang

王梦雅, 李世友, 高灿坤, 樊晓琦, 权银, 李小华, 李春雷, 张宁霜. 以MoS2修饰的3D打印还原石墨烯气凝胶制备微型超级电容器电极. 新型炭材料(中英文), 2024, 39(2): 283-296. doi: 10.1016/S1872-5805(24)60823-1
引用本文: 王梦雅, 李世友, 高灿坤, 樊晓琦, 权银, 李小华, 李春雷, 张宁霜. 以MoS2修饰的3D打印还原石墨烯气凝胶制备微型超级电容器电极. 新型炭材料(中英文), 2024, 39(2): 283-296. doi: 10.1016/S1872-5805(24)60823-1
WANG Meng-ya, LI Shi-you, GAO Can-kun, FAN Xiao-qi, QUAN Yin, LI Xiao-hua, LI Chun-lei, ZHANG Ning-shuang. The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene oxide aerogels by 3D printing. New Carbon Mater., 2024, 39(2): 283-296. doi: 10.1016/S1872-5805(24)60823-1
Citation: WANG Meng-ya, LI Shi-you, GAO Can-kun, FAN Xiao-qi, QUAN Yin, LI Xiao-hua, LI Chun-lei, ZHANG Ning-shuang. The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene oxide aerogels by 3D printing. New Carbon Mater., 2024, 39(2): 283-296. doi: 10.1016/S1872-5805(24)60823-1

以MoS2修饰的3D打印还原石墨烯气凝胶制备微型超级电容器电极

doi: 10.1016/S1872-5805(24)60823-1
基金项目: 甘肃省重点研发计划(21YF5GA079);兰州理工大学红柳一流学科建设计划
详细信息
    通讯作者:

    张宁霜,博士,副教授. E-mail:zhangns@lut.edu.cn

  • 中图分类号: TQ127.1+1

The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene oxide aerogels by 3D printing

Funds: This work was supported by the Key R&D plan of Gansu Province (21YF5GA079) and the Lanzhou University of Technology Hongliu First-class Discipline Construction Program
More Information
  • 摘要: 微型超级电容器(MSCs)具有高的功率密度和卓越的循环性能,广泛的潜在应用,因而受到诸多关注。然而,制备具有高表面电容和能量密度的MSCs电极仍然存在挑战。本研究使用还原石墨烯气凝胶(GA)和二硫化钼(MoS2)作为材料,结合3D打印和表面修饰方法成功构建了具有超高表面电容和能量密度的MSCs电极。通过3D打印技术,获得具有稳定宏观结构和GA交联微孔结构的电极。此外,采用溶液法在3D打印电极表面加载MoS2纳米片,进一步提高了材料的电化学性能。具体而言,电极的表面电容达3.99 F cm−2,功率密度为194 µW cm−2,能量密度为1997 mWh cm−2,表现出卓越的电化学性能和循环稳定性。这项研究为制备具有高表面电容和高能量密度的微型超级电容器电极提供了一种简单高效的方法,在MSCs电极领域具有重要的参考意义。
  • FIG. 3063.  FIG. 3063.

    FIG. 3063..  FIG. 3063.

    Figure  1.  Procedure of the overall printing scheme, loading engineering, and structure of an assembled device

    Figure  2.  (a) SEM image and (b) TEM image of GO, (d) SEM image and (e) TEM image of GA, (c, f) SEM images at different magnifications of the 3DPE framework sample

    Figure  3.  Rheological properties of the formulated ink in (a) viscosity versus shearing rate and (b) storage and loss modulus versus shear stress. (c) Raman spectra of raw materials GO and GA. (d) Diffraction XRD patterns collected in 2θ scan of GO, GA and 3DPE. XPS high-resolution scans of C 1s (e) GO, (f) GA and (g) 3DPE

    Figure  4.  (a) The galvanostatic charge-discharge curves at a current density of 1 A g−1 and (b) the cycling voltammetry curves at a scanning rate of 10 mV s−1 of 3DPE with different layers. (c) The areal and (d) gravimetric capacities at different current densities of 3DPE with different layers. (e) The areal and (f) gravimetric capacities at a current density of 1 A g−1 of 3DPE with different layers. (g) Impedance nyquist plots of 3DPE with different layers. (h) Cycling stability of 3DPE-4 at a current density of 1 A g−1

    Figure  5.  (a) SEM image, (b) TEM image and (c) EDX mapping of the Mo-3DPE

    Figure  6.  (a) Raman spectra, (b) XRD of 3DPE and Mo-3DPE, (c) XPS high-resolution scans of S 2p of Mo-3DPE, (d) XPS high-resolution scans of Mo 3d of MoS2 and (e) XPS high-resolution scans of Mo 3d of Mo-3DPE

    Figure  7.  (a) The gravimetric and (b) areal capacities of 3DPE-4 and Mo-3DPE-4 at a current density of 1 A g−1. (c) The cycling voltammetry curves at a scanning rate of 10 mV s−1 and (d) the galvanostatic charge-discharge curves of 3DPE-4 and Mo-3DPE-4 at a current density of 1 A g−1. (e) Impedance Nyquist plots of 3DPE-4 and Mo-3DPE-4. (f) The contribution of Mo-3DPE at different scan rates. (g) Cycling stability of Mo-3DPE-4 at a current density of 1 A g−1

    Figure  8.  (a) Ragone plots[8,25,38,44-46]. (b) Comparison of the areal capacitance and gravimetric areal energy density in this work with those in other works[3,29,36,44-46].

  • [1] Zhu R. C, Toward fully processable micro-supercapacitors[J]. Joule,2021,5:2257-2258. doi: 10.1016/j.joule.2021.08.008
    [2] Zhou X A, Zhang F L, Fu X L, et al. Utilizing fast ion conductor for singel-crystal Ni-rich cathodes to achieve dual-functional modification of conductor network constructing and near-surface doping[J]. Energy Storage Materials,2022,52:19-28. doi: 10.1016/j.ensm.2022.07.029
    [3] Zhang F, Li Z G, Xu M J, et al. A review of 3D printed porous ceramics[J]. Journal of the European Ceramic Society,2022,42:3351-3373. doi: 10.1016/j.jeurceramsoc.2022.02.039
    [4] Ma J X, Zheng S H, Chi L P, et al. 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability[J]. Advanced Materials,2022,34:39.
    [5] Guo B B, Liang G J, Yu S X, et al. 3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications[J]. Energy Storage Materials,2021,39:146-165. doi: 10.1016/j.ensm.2021.04.021
    [6] Long J W, Dunn B, Rolison D R, et al. 3D architectures for batteries and electrodes[J]. Advanced Energy Materials,2020,10:6.
    [7] Yuan J, Qiu M, Chen J X, et al. High mass loading 3D-printed sodium-ion hybrid capacitors[J]. Advanced Functional Materials,2022,32:2203732. doi: 10.1002/adfm.202203732
    [8] Lin D, Chandrasekaran S, Forien J B, et al. 3D-printed graded electrode with ultrahigh MnO2 loading for non-aqueous electrochemical energy storage[J]. Advanced Energy Materials, 2023, 2300408.
    [9] Mo T M, Wang Z X, Zeng L, et al. Energy storage mechanism in supercapacitors with porous graphdiynes: Effects of pore topology and electrode metallicity[J]. Advanced Materials,2023,35:2301118. doi: 10.1002/adma.202301118
    [10] Yue C A, Kang H, Jiang F X, et al. The construction of hierarchical PEDOT@MoS2 nanocomposite for high-performance supercapacitor[J]. Applied Surface Science,2021,546:149088. doi: 10.1016/j.apsusc.2021.149088
    [11] Ali B A, Omar A A, Khalil A G, et al. Untapped potential of polymorph MoS2: Tuned cationic intercalation for high-performance symmetric supercapacitors[J]. ACS Applied Materials & Interfaces,2019,11:33955-33965.
    [12] Zhou H J, Zhu G Y, Dong S Y, et al. Ethanol-ionduced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors[J]. Advanced Materials,2023,35:2211523. doi: 10.1002/adma.202211523
    [13] Clerici F, Fontana M, Bianco S, et al. Lamberti, In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2016,8:10459-10465.
    [14] Asbani B, Buvat G, Freixas J, et al. Ultra-high areal capacitance and high rate capability RuO2 thin film electrodes for 3D micro-supercapacitors[J]. Energy Storage Materials,2021,42:259-267. doi: 10.1016/j.ensm.2021.07.038
    [15] Yang W, He L, Tian X C, et al. Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density[J]. Small,2017,13:1700639. doi: 10.1002/smll.201700639
    [16] Li D D, Yang S, Chen X, et al. 3D wearable fabric-based micro-supercapacitors with ultra-high areal capacitance[J]. Advanced Functional Materials,2021,31:2107484. doi: 10.1002/adfm.202107484
    [17] Gao W L, Michalička J, Pumera M. Hierarchical atomic layer deposited V2O5 on 3D printed nanocarbon electrodes for high-performance aqueous zinc-ion batteries[J]. Small,2022,18:2105572. doi: 10.1002/smll.202105572
    [18] Jang J S, Jung H J, Chong S Y, et al. 2D materials decorated with ultra-thin and porous graphene oxide for high stability and selective surface activity[J]. Advanced Materials,2020,32:10.
    [19] Li P Z, Chen N, Al-Hamry A, et al. Inkjet-printed MoS2-based 3D-structured electrocatalysts on Cu films for ultra-efficient hydrogen evolution reaction[J]. Chemical Engineering Journal,2023,457:141289. doi: 10.1016/j.cej.2023.141289
    [20] Zhang W, Liu H Z, Zhang X N, et al. 3D printed micro-electrochemical storage devices: From design to integration[J]. Advanced Functional Materials,2021,31:2104909. doi: 10.1002/adfm.202104909
    [21] Ma J X, Zheng S H, Cao Y X, et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics[J]. Advanced Energy Materials,2021,11:23.
    [22] Biswas R K, Vijayaraghavan R K, McNally P, et al. Graphene growth kinetics for CO2 laser carbonization of polyimide[J]. Materials Letters,2022,307:131097. doi: 10.1016/j.matlet.2021.131097
    [23] Yu M, Feng X L. Thin-film electrode-based supercapacitors[J]. Joule,2019,3:338-360. doi: 10.1016/j.joule.2018.12.012
    [24] Li X L, Ling S W, Zeng L, et al. Directional freezing assisted 3D printing to solve a flexible battery dilemma: ultrahigh energy/power density and uncompromised mechanical compliance[J]. Advanced Energy Materials,2022,12:8.
    [25] Manjakkal L, Pullanchiyodan A, Yogeswaran N, et al. A wearable supercapacitor based on conductive PEDOT: PSS-coated cloth and a sweat electrolyte[J]. Advanced Materials,2020,32:13.
    [26] Huang J, Wu P Y. Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects[J]. Nano-Micro Letters,2021,13:309-322.
    [27] Sohouli E, Adib K, Maddah B, et al. Preparation of a supercapacitor electrode based on carbon nano-onions/manganese dioxide/iron oxide nanocomposite[J]. Journal of Energy Storage,2022,52:104987. doi: 10.1016/j.est.2022.104987
    [28] Yang H, Wan Y, Sun K, et al. Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries[J]. Advanced Functional Materials, 2023, 2215076.
    [29] He H N, Zeng L, Luo D, et al. 3D printing of electron/ion-flux dual-gradient anodes for dendrite-free zinc batteries[J]. Advanced Materials,2023,35:2211498. doi: 10.1002/adma.202211498
    [30] Meng Q, Du C C, Xu Z Y, et al. Siloxene-reduced graphene oxide composite hydrogel for supercapacitors[J]. Chemical Engineering Journal,2020,393:124684. doi: 10.1016/j.cej.2020.124684
    [31] Zhang F L, Wang C, Zhao D N, et al. Synergistic effect of sulfolane and lithium difluoro(oxalate)borate on improvement of compatibility for LiNi0. 8Co0. 15Al0.05O2 electrode[J]. Electrochimica Acta,2020,337:135727. doi: 10.1016/j.electacta.2020.135727
    [32] Zhou G Q, Li M C, Liu C Z, et al. 3D printed nitrogen-doped thick carbon architectures for supercapacitor: Ink rheology and electrochemical performance[J]. Advanced Science,2023,10:2206320. doi: 10.1002/advs.202206320
    [33] Zhang M R, Xu T Z, Wang D, et al. A 3D-printed proton pseudocapacitor with ultrahigh mass loading and areal energy density for fast energy storage at low temperature[J]. Advanced Materials, 2023, 2209963.
    [34] Teng W L, Zhou Q Q, Wang X K, et al. Enhancing ions/electrons dual transport in rGO/PEDOT: PSS fiber for high-performance supercapacitor[J]. Carbon,2021,189:284-292.
    [35] Yao B, Cui Q. Y, Cardenas A, et al. High-stability conducting polymer-based conformal electrodes for bio-/iono-electronics[J]. Materials Today,2022,53:84-96. doi: 10.1016/j.mattod.2021.12.002
    [36] Bießmann L, Kreuzer L P, Widmann T, et al. Monitoring the swelling behanior of PEDOT: PSS electrodes under high humidity conditions[J]. ACS Applied Materials & Interfaces,2018,10:9865-9872.
    [37] Dingler C, Waiter R, Gompf B, et al. In situ monitoring of optical constants, conductivity, and swelling of PEDOT: PSS from doped to the fully neutral state[J]. Macromolecules,2022,55:1600-1608. doi: 10.1021/acs.macromol.1c02515
    [38] Zhang G L, Zhang R F, Zang R Q, et al. 3D hetero-nanostructured electrode constructed on carbon fiber paper with 2D 1T-MoS2/1D-Cu(OH)2 for flexible asymmetric solid-state supercapacitors[J]. Journal of Power Sources,2022,523:11.
    [39] Li B, Liang X, Li G, et al. Inkjet-printed ultrathin MoS2 based electrodes for flexible in-plane microsupercapacitors[J]. ACS Applied Materials and Interfaces,2020,12:39444-39454. doi: 10.1021/acsami.0c11788
    [40] Chen H, Song T B, Tang L. B, et al. In-situ growth of vertically aligned MoS2 nanowalls on reduced graphene oxide enables a large capacity and highly stable anode for sodium ion storage[J]. Journal of Power Sources, 2020, 445.
    [41] Huo J H, Xue Y J, Zhang X J, et al. Hierarchical porous reduced graphene oxide decorated with molybdenum disulfide for high-performance supercapacitors[J]. Electrochimica Acta,2018,292:639-645. doi: 10.1016/j.electacta.2018.09.180
    [42] Xu S R, Zhu Q, Chen T, et al. Hydrothermal synthesis of Co-doped-MoS2/reduced graphene oxide hybrids with enhanced electrochemical lithium storage performances[J]. Materials Chemistry and Physics,2018,219:399-410. doi: 10.1016/j.matchemphys.2018.08.048
    [43] Yin B, Liang S Q, Yu D D, et al. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries[J]. Advanced Materials,2021,33:11.
    [44] Kang W, Zeng L, Ling S W, et al. 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility[J]. Advanced Energy Materials,2021,11:2100020. doi: 10.1002/aenm.202100020
    [45] Li E Y, Liu R, Huang S, et al. Flexible N-doped active carbon/bacterial cellulose paper for supercapacitor electrode with high areal performance[J]. Synthetic. Metals,2017,226:104-112. doi: 10.1016/j.synthmet.2017.02.008
    [46] Tagliaferri S, Nagaraju G, Panagiotopoulos A, et al. Aqueous inks of pristine graphene for 3D printed microsupercapacitors with high capacitance[J]. ACS Nano,2021,15:15342-15353. doi: 10.1021/acsnano.1c06535
    [47] Cui X L, Wang S X, Mao L P, et al. Optimizing transition metal ion ratio of LiNi0. 5+xCo0. 2+yMn0.3+zO2 (x+y+z=0) by simplex and normalization combined method[J]. Electrochimica Acta,2020,337:135709. doi: 10.1016/j.electacta.2020.135709
    [48] Fu X L, Zhou X A, Zhao D N, et al. Study on electrochemical performance of Al-substitution for different cations in Li-rich Mn-based materials[J]. Electrochimica Acta,2021,394:139136. doi: 10.1016/j.electacta.2021.139136
    [49] Kazari H, Pajootan E, Hubert P, et al. Dry synthesis of binder-free ruthenium nitride-coated carbon nanotubes as a flexible supercapacitor electrode[J]. ACS Applied Materials & Interfaces,2022,14:15112-15121.
    [50] Yuan Y J, Jiang L, Li X, et al. Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors[J]. Advanced Materials,2022,34:2110013. doi: 10.1002/adma.202110013
  • 20240207 Supporting Information.pdf
  • 加载中
图(9)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  107
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-05
  • 录用日期:  2023-11-10
  • 修回日期:  2023-11-09
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2024-04-20

目录

    /

    返回文章
    返回