留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cactus-like NC/CoxP electrode enables efficient and stable hydrogen evolution for saline water splitting

CHEN Xu ZHAO Jin-yu ZHANG Wen-sheng WANG Xiao-min

陈续, 赵金玉, 张文盛, 王晓敏. 仙人掌状的NC/CoxP自支撑电极用于盐水电解实现高效稳定析氢. 新型炭材料(中英文), 2024, 39(1): 152-163. doi: 10.1016/S1872-5805(24)60824-3
引用本文: 陈续, 赵金玉, 张文盛, 王晓敏. 仙人掌状的NC/CoxP自支撑电极用于盐水电解实现高效稳定析氢. 新型炭材料(中英文), 2024, 39(1): 152-163. doi: 10.1016/S1872-5805(24)60824-3
CHEN Xu, ZHAO Jin-yu, ZHANG Wen-sheng, WANG Xiao-min. Cactus-like NC/CoxP electrode enables efficient and stable hydrogen evolution for saline water splitting. New Carbon Mater., 2024, 39(1): 152-163. doi: 10.1016/S1872-5805(24)60824-3
Citation: CHEN Xu, ZHAO Jin-yu, ZHANG Wen-sheng, WANG Xiao-min. Cactus-like NC/CoxP electrode enables efficient and stable hydrogen evolution for saline water splitting. New Carbon Mater., 2024, 39(1): 152-163. doi: 10.1016/S1872-5805(24)60824-3

仙人掌状的NC/CoxP自支撑电极用于盐水电解实现高效稳定析氢

doi: 10.1016/S1872-5805(24)60824-3
基金项目: 国家自然科学基金(52072256);山西省重点研发计划(202102030201006,202202070301016);中央引导地方科技发展资金项目 (YDZJSX2021B005);山西省科技计划揭榜招标项目(20201101016);山西省科技创新基地建设项目(YDZJSX2022B003);山西省自然科学基金项目(20210302124308);山西省教学改革项目(2021YJJG046)
详细信息
    通讯作者:

    王晓敏,教授. E-mail:wangxiaomin@tyut.edu.cn

  • 中图分类号: TK51

Cactus-like NC/CoxP electrode enables efficient and stable hydrogen evolution for saline water splitting

More Information
  • 摘要: 设计高效、稳定的析氢催化剂是盐水电解技术发展的必然要求。本文通过原位生长策略在泡沫镍(NF)上生长NC/CoxP@NF催化剂,它由CoxP纳米线阵列与氮掺杂碳纳米片(NC)交替生长组成。在制备过程中,Co(OH)2纳米线通过内源Co2+与2−甲基咪唑的溶解配位作用在NF上原位转化为Co-MOF纳米片。仙人掌状的微观结构使NC/CoxP@NF暴露出丰富的活性位点和离子运输通道,促进了HER催化反应动力学。此外,在分级多孔的NC/CoxP@NF中,纳米线和自支撑纳米片交替生长,进一步增强了材料的结构稳定性。最重要的是,表面聚阴离子(磷酸盐)和NC纳米片保护层的形成提高了催化剂的耐腐性能。最终,NC/CoxP@NF-10表现出优异的析氢性能,在1.0 mol L−1 KOH和1.0 mol L−1 KOH + 0.5 mol L−1 NaCl条件下,分别需要107和133 mV的过电位达到10 mA cm−2的电流密度。
  • FIG. 2917.  FIG. 2917.

    FIG. 2917..  FIG. 2917.

    Figure  1.  (a) Schematic illustration of catalysts synthesis. SEM images at different magnifications: (b-d) CoxP@NF; (e-g) NC/CoxP@NF-5; (h-j) NC/CoxP@NF-10 and (k-m) NC/CoxP@NF-15

    Figure  2.  (a) TEM image; (b) HRTEM image and (c) the corresponding elemental mappings of NC/CoxP@NF-10. (d) XRD patterns and (e) the magnified diffraction peaks at the range of 10°-43° of all catalysts. (f) Raman spectra of NC/CoxP@NF-5, NC/CoxP@NF-10 and NC/CoxP@NF-15. (g) Pore distribution curve of NC/CoxP@NF-10

    Figure  3.  High-resolution XPS spectra of (a) Co 2p, (b) P 2p, (c) C 1s and (d) N 1s in catalysts

    Figure  4.  HER performance of all catalysts in 1 mol L−1 KOH solution. (a) Polarization curves. (b) The corresponding Tafel plots. (c) Scan rate dependence of the current densities. (d) EIS Nyquist plots of all electrodes (Inset is the equivalent circuit diagram)

    Figure  5.  Electrocatalytic HER performance of all catalysts in 1 mol L−1 KOH + 0.5 mol L−1 NaCl. (a) LSV polarization curves. (b) The corresponding Tafel plots. (c) Scan rate dependence of the current densities. (d) EIS Nyquist plots of all electrodes

    Figure  6.  1 mol L−1 KOH electrolyte: (a) Chronopotentiometric curves conducted at a constant current density of -100 mA cm−2. The LSV curves before and after stability tests for (b) NC/CoxP@NF-10 and (c) CoxP@NF. 1 mol L−1 KOH + 0.5 mol L−1 NaCl solution: (d) Stability tests of NC/CoxP@NF-10 and CoxP@NF. LSV curves before and after stability tests for (e) NC/CoxP@NF-10 and (f) CoxP@NF

  • [1] Yuan H, Zhao L, Chang B, et al. Laser fabrication of Pt anchored Mo2C micropillars as integrated gas diffusion and catalytic electrode for proton exchange membrane water electrolyzer[J]. Applied Catalysis B: Environmental,2022,314:121455. doi: 10.1016/j.apcatb.2022.121455
    [2] Gao Y, Qian S, Wang H, et al. Boron-doping on the surface mediated low-valence Co centers in cobalt phosphide for improved electrocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental,2023,320:122014. doi: 10.1016/j.apcatb.2022.122014
    [3] Zheng Y, Qiao S Z. Direct seawater splitting to hydrogen by a membrane electrolyzer[J]. Joule,2023,7(1):20-22. doi: 10.1016/j.joule.2022.12.017
    [4] Xie H, Zhao Z, Liu T, et al. A membrane-based seawater electrolyser for hydrogen generation[J]. Nature,2022,612:73-678.
    [5] Wu L, Yu L, Zhang F, et al. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater Splitting[J]. Advanced Functional Materials,2020,31(1):2006484.
    [6] Zhu J, Chi J, Cui T, et al. F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density[J]. Applied Catalysis B: Environmental,2023,328:122487. doi: 10.1016/j.apcatb.2023.122487
    [7] Wang X, Liu X, Wu S, et al. Phosphorus vacancies enriched cobalt phosphide embedded in nitrogen doped carbon matrix enabling seawater splitting at ampere-level current density[J]. Nano Energy,2023,109:108292. doi: 10.1016/j.nanoen.2023.108292
    [8] Wu D, Liu B, Li R, et al. Fe-regulated amorphous-crystal NiFeP2 nanosheets coupled with Ru powerfully drive seawater splitting at large current density[J]. Small,2023,19(36):2300030. doi: 10.1002/smll.202300030
    [9] Yu W, Liu H, Zhao Y, et al. Amorphous NiOn coupled with trace PtOx toward superior electrocatalytic overall water splitting in alkaline seawater media[J]. Nano Research,2023,16:6517-6530. doi: 10.1007/s12274-022-5369-0
    [10] Chen Z, Li Q, Xiang H, et al. Hierarchical porous NiFe-P@NC as an efficient electrocatalyst for alkaline hydrogen production and seawater electrolysis at high current density[J]. Inorganic Chemistry Frontiers,2023,10(5):1493-1500. doi: 10.1039/D2QI02703H
    [11] Jung Kim S, Choi H, Ho Ryu J, et al. Zn-doped nickel iron (oxy)hydroxide nanocubes passivated by polyanions with high catalytic activity and corrosion resistance for seawater oxidation[J]. Journal of Energy Chemistry,2023,81:82-92. doi: 10.1016/j.jechem.2023.02.033
    [12] Li J, Yu T, Wang K, et al. Multiscale engineering of nonprecious metal electrocatalyst for realizing ultrastable seawater splitting in weakly alkaline solution[J]. Advanced Science,2022,9(25):2202387. doi: 10.1002/advs.202202387
    [13] Ma T, Xu W, Li B, et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes[J]. Angewandte Chemie-International Edition,2021,60(42):22740-22744. doi: 10.1002/anie.202110355
    [14] Zhou S, Wang J, Li J, et al. Surface-growing organophosphorus layer on layered double hydroxides enables boosted and durable electrochemical freshwater/seawater oxidation[J]. Applied Catalysis B: Environmental,2023,332:122749. doi: 10.1016/j.apcatb.2023.122749
    [15] Chen D, Bai H, Zhu J, et al. Multiscale hierarchical structured NiCoP enabling ampere-level water splitting for multi-scenarios green energy-to-hydrogen systems[J]. Advanced Energy Materials,2023,13(22):2300499. doi: 10.1002/aenm.202300499
    [16] Li J, Song M, Hu Y, et al. Hybrid heterostructure Ni3N|NiFeP/FF self-supporting electrode for high-current-density alkaline water Electrolysis[J]. Small Methods,2023,7(4):2201616. doi: 10.1002/smtd.202201616
    [17] Loomba S, Khan M W, Haris M, et al. Nitrogen-doped porous nickel molybdenum phosphide sheets for efficient seawater splitting[J]. Small,2023,19(18):2207310. doi: 10.1002/smll.202207310
    [18] Chen N, Che S, Yuan Y, et al. Self-supporting electrocatalyst constructed from in-situ transformation of Co(OH)2 to metal-organic framework to Co/CoP/NC nanosheets for high-current-density water splitting[J]. Journal of Colloid and Interface Science,2023,645:513-524. doi: 10.1016/j.jcis.2023.04.089
    [19] Popczun E J, Read C G, Roske C W, et al. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles[J]. Angewandte Chemie-International Edition,2014,53(21):5427-5430. doi: 10.1002/anie.201402646
    [20] Wang K, Zhao R, Wang Z, et al. Controlled tuning the morphology of CoNiP catalysts with ultra-high activity for water splitting at large current densities in alkaline medium[J]. Applied Surface Science,2023,626:157218. doi: 10.1016/j.apsusc.2023.157218
    [21] Yu M, Li J, Liu F, et al. Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting[J]. Journal of Energy Chemistry,2022,72:361-369. doi: 10.1016/j.jechem.2022.04.004
    [22] Obata K, Takanabe K. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts[J]. Angewandte Chemie-International Edition,2018,57(6):1616-1620. doi: 10.1002/anie.201712121
    [23] Chang J, Wang G, Yang Z, et al. Dual-doping and synergism toward high-performance seawater electrolysis[J]. Advanced Materials,2021,33(33):2101425. doi: 10.1002/adma.202101425
    [24] Sun Z, Chu B, Wang S, et al. Hydrogen-bond induced and hetero coupling dual effects in N-doped carbon coated CrN/Ni nanosheets for efficient alkaline freshwater/seawater hydrogen evolution[J]. Journal of Colloid and Interface Science,2023,646:361-369. doi: 10.1016/j.jcis.2023.05.006
    [25] Li J, Hu Y, Huang X, et al. Bimetallic phosphide heterostructure coupled with ultrathin carbon layer boosting overall alkaline water and seawater splitting[J]. Small,2023,19(20):2206533. doi: 10.1002/smll.202206533
    [26] Yu Q, Liu X, Liu G, et al. Constructing three‐phase heterojunction with 1D/3D hierarchical structure as efficient trifunctional electrocatalyst in alkaline eeawater[J]. Advanced Functional Materials,2022,32(46):2205767. doi: 10.1002/adfm.202205767
    [27] Tan Y, Feng J, Dong H, et al. The edge effects boosting hydrogen evolution performance of platinum/transition bimetallic phosphide hybrid electrocatalysts[J]. Advanced Functional Materials,2022,33(4):2209967.
    [28] Li T, Zhao X, Getaye Sendeku M, et al. Phosphate-decorated Ni3Fe-LDHs@CoPx nanoarray for near-neutral seawater splitting[J]. Chemical Engineering Journal,2023,460:141413. doi: 10.1016/j.cej.2023.141413
    [29] Song Y, Sun M, Zhang S, et al. Alleviating the work function of Vein-Like CoXP by Cr doping for enhanced seawater electrolysis[J]. Advanced Functional Materials,2023,33(30):2214081. doi: 10.1002/adfm.202214081
    [30] Liu S S, Ma L J, Li J S. Dual-metal-organic-framework derived CoP/MoP hybrid as an efficient electrocatalyst for acidic and alkaline hydrogen evolution reaction[J]. Journal of Colloid and Interface Science,2022,631:147-153.
    [31] Li L, Wen Y, Han G, et al. Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction[J]. Chemical Engineering Journal,2022,437:135320. doi: 10.1016/j.cej.2022.135320
    [32] Ye G, Liu S, Huang K, et al. Domain-confined etching strategy to regulate defective sites in carbon for high-efficiency electrocatalytic oxygen reduction[J]. Advanced Functional Materials,2022,32(18):2111396. doi: 10.1002/adfm.202111396
    [33] Han N, Feng S, Liang Y, et al. Achieving efficient electrocatalytic oxygen evolution in acidic media on yttrium ruthenate pyrochlore through cobalt incorporation[J]. Advanced Functional Materials,2023,33(20):2208399. doi: 10.1002/adfm.202208399
    [34] Zhu J, Li P, Wang G, et al. Design strategy for high-performance bifunctional electrode materials with heterogeneous structures formed by hydrothermal sulfur etching[J]. Journal of Colloid Interface Science,2022,633:608-618.
    [35] Liu Y, Zhang H, Song W, et al. In-situ growth of ReS2/NiS heterostructure on Ni foam as an ultra-stable electrocatalyst for alkaline hydrogen generation[J]. Chemical Engineering Journal,2023,451:138905. doi: 10.1016/j.cej.2022.138905
    [36] Lv X, Wan S, Mou T, et al. Atomic-level surface engineering of nickel phosphide nanoarrays for efficient electrocatalytic water splitting at large current density[J]. Advanced Functional Materials,2022,33(4):2205161.
    [37] Jin X, Jang H, Jarulertwathana N, et al. Atomically thin holey two-dimensional Ru2P nanosheets for enhanced hydrogen evolution electrocatalysis[J]. ACS Nano,2022,16(10):16452-16461. doi: 10.1021/acsnano.2c05691
    [38] Hong C-B, Li X, Wei W-B, et al. Nano-engineering of Ru-based hierarchical porous nanoreactors for highly efficient pH-universal overall water splitting[J]. Applied Catalysis B: Environmental,2021,294:120230. doi: 10.1016/j.apcatb.2021.120230
    [39] Zhang K, Wang H, Qiu J, et al. Multi-dimensional Pt/Ni(OH)2/nitrogen-doped graphene nanocomposites with low platinum content for methanol oxidation reaction with highly catalytic performance[J]. Chemical Engineering Journal,2021,421:127786. doi: 10.1016/j.cej.2020.127786
    [40] Han Y, Duan H, Liu W, et al. Engineering the electronic structure of platinum single-atom sites via tailored porous carbon nanofibers for large-scale hydrogen production[J]. Applied Catalysis B: Environmental,2023,335:122898. doi: 10.1016/j.apcatb.2023.122898
    [41] Wang R, Liu J, Xie J, et al. Hollow nanocage with skeleton Ni-Fe sulfides modified by N-doped carbon quantum dots for enhancing mass transfer for oxygen electrocatalysis in zinc-air battery[J]. Applied Catalysis B: Environmental,2023,324:122230. doi: 10.1016/j.apcatb.2022.122230
    [42] Nie N, Zhang D, Wang Z, et al. Stable PtNb-Nb2O5 heterostructure clusters @CC for high-current-density neutral seawater hydrogen evolution[J]. Applied Catalysis B: Environmental,2022,318:121808. doi: 10.1016/j.apcatb.2022.121808
    [43] Liu H, Li J, Zhang Y, et al. Boosted water electrolysis capability of NixCoyP via charge redistribution and surface activation[J]. Chemical Engineering Journal,2023,473:145397. doi: 10.1016/j.cej.2023.145397
    [44] Yan H, Jiang Z, Deng B, et al. Ultrathin carbon coating and defect engineering promote RuO2 as an efficient catalyst for acidic oxygen evolution reaction with super‐high durability[J]. Advanced Energy Materials,2023,13(23):2300152. doi: 10.1002/aenm.202300152
    [45] Wang H-Y, Ren J-T, Wang L, et al. Synergistically enhanced activity and stability of bifunctional nickel phosphide/sulfide heterointerface electrodes for direct alkaline seawater electrolysis[J]. Journal of Energy Chemistry,2022,75:66-73. doi: 10.1016/j.jechem.2022.08.019
    [46] Ren J T, Chen L, Tian W W, et al. Rational synthesis of core-shell-structured nickel sulfide-based nanostructures for efficient seawater electrolysis[J]. Small,2023,19(27):2300194. doi: 10.1002/smll.202300194
    [47] Liu X, Zhao X, Cao S, et al. Local hydroxyl enhancement design of NiFe sulfide electrocatalyst toward efficient oxygen evolution reaction[J]. Applied Catalysis B: Environmental,2023,331:122715. doi: 10.1016/j.apcatb.2023.122715
  • ncm2023-0179_Revised+supporting+information_新型炭材料(中英文).pdf
  • 加载中
图(7)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  61
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-10-30
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回